Studies in Commutative Algebra
交换代数研究
基本信息
- 批准号:1600198
- 负责人:
- 金额:$ 9.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project concerns the study of questions in the theory of commutative algebra. This is a field that deals with the study of algebraic varieties: geometric objects given as the solutions of a system of polynomial equations. For example, the solution set of a single polynomial equation in two variables can be geometrically realized as a curve in the plane (e.g., a parabola y=x^2). One important aspect is to understand the local picture of these solution sets, which has applications in many sciences and engineering. For example, the parabola is smooth (meaning that locally it looks like a line) while the curve defined by y^2=x^3 is smooth except at the origin, where it is a cusp. The singular or non-smooth points of an algebraic variety have rich and subtle local structure, and detailing their properties is a crucial part of many investigations. The projects that will be explored are focused on the local properties of algebraic varieties, such as their local intersection numbers and the multiplicities (which is a measure of how bad the singular points are). Several of the questions under study are longstanding and of fundamental importance. This project investigates several longstanding open questions in commutative algebra from new perspectives. One is to attack Serre's conjecture on positivity of intersection multiplicities and Hochster's direct summand conjecture using a new notion called lim Cohen-Macaulay sequences of modules, whose existence will establish both conjectures. Another is to attack Lech's conjecture on Hilbert-Samuel multiplicities using advances in positive characteristic methods. The investigator recently settled this conjecture in dimension three in equal characteristic (the conjecture was previously known only in dimension less than or equal to two). The goal here is to improve the methods and to seek solutions in higher dimension. Other research projects include studying singularities in positive characteristic, especially investigating their behavior under deformation, under passing to a generic linkage, and their connections with F-module and D-module theory. A crucial technique to be employed is the Frobenius structures on local cohomology modules.
这个研究计画是关于交换代数理论中的问题的研究。这是一个研究代数簇的领域:几何对象作为多项式方程组的解。例如,两个变量中的单个多项式方程的解集可以几何地实现为平面中的曲线(例如,抛物线y=x^2)。一个重要的方面是了解这些解集的局部图像,这在许多科学和工程中有应用。例如,抛物线是光滑的(这意味着它在局部看起来像一条线),而由y^2=x^3定义的曲线除了在原点是尖点之外是光滑的。代数簇的奇异点或非光滑点具有丰富而微妙的局部结构,详细描述它们的性质是许多研究的关键部分。将探索的项目集中在代数簇的局部性质上,例如它们的局部交叉数和多重性(这是衡量奇点有多糟糕的指标)。正在研究的一些问题是长期存在的,具有根本重要性。这个项目从新的角度研究了交换代数中几个长期存在的开放问题。一个是攻击Serre关于相交重数的正性猜想和Hochster的直接和项猜想,使用一个新的概念称为lim Cohen-Macaulay序列的模块,它的存在将建立两个猜想。二是利用正特征线方法的进展来攻击Lech关于Hilbert-Samuel多重数的猜想。研究人员最近解决了这个猜想在三维中的平等特征(该猜想以前只知道在维度小于或等于2)。本文的目标是改进方法,寻求更高维度的解。其他研究项目包括研究正特性的奇点,特别是研究它们在变形下的行为,传递到通用链接下,以及它们与F-模和D-模理论的联系。一个关键的技术是Frobenius结构的局部上同调模。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Linquan Ma其他文献
The category of F-modules has finite global dimension
F 模块的类别具有有限的全局维度
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Linquan Ma - 通讯作者:
Linquan Ma
$$F$$ -injectivity and Buchsbaum singularities
- DOI:
10.1007/s00208-014-1098-3 - 发表时间:
2014-09-23 - 期刊:
- 影响因子:1.400
- 作者:
Linquan Ma - 通讯作者:
Linquan Ma
The dualizing complex of F-injective and Du Bois singularities
F-内射和杜波依斯奇点的对偶复形
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0.8
- 作者:
B. Bhatt;Linquan Ma;Karl Schwede - 通讯作者:
Karl Schwede
Ascending chain for F -pure thresholds on a fixed strongly F -regular germ.
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Linquan Ma - 通讯作者:
Linquan Ma
Cohomologically Full Rings
上同调满环
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:1
- 作者:
Hailong Dao;Alessandro De Stefani;Linquan Ma - 通讯作者:
Linquan Ma
Linquan Ma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Linquan Ma', 18)}}的其他基金
Measuring singularities in commutative algebra
测量交换代数中的奇点
- 批准号:
2302430 - 财政年份:2023
- 资助金额:
$ 9.8万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Algebraic Geometry and Singularities in Positive and Mixed Characteristic
FRG:合作研究:代数几何和正特征和混合特征中的奇点
- 批准号:
1952366 - 财政年份:2020
- 资助金额:
$ 9.8万 - 项目类别:
Continuing Grant
Singularities and Multiplicities in Commutative Algebra
交换代数中的奇异性和多重性
- 批准号:
1901672 - 财政年份:2019
- 资助金额:
$ 9.8万 - 项目类别:
Standard Grant
相似海外基金
Studies in Commutative Algebra and Algebraic Geometry
交换代数和代数几何研究
- 批准号:
2200501 - 财政年份:2022
- 资助金额:
$ 9.8万 - 项目类别:
Continuing Grant
Studies in Commutative Algebra and Algebraic Geometry
交换代数和代数几何研究
- 批准号:
1902116 - 财政年份:2019
- 资助金额:
$ 9.8万 - 项目类别:
Continuing Grant
Studies in Commutative Algebra and Algebraic Geometry
交换代数和代数几何研究
- 批准号:
1401384 - 财政年份:2014
- 资助金额:
$ 9.8万 - 项目类别:
Continuing Grant
Pan American Advanced Studies Institute: Commutative Algebra and Its Interactions with Algebraic Geometry, Representation Theory, and Physics; Guanajuato, Mexico; May 14-25, 2012
泛美高等研究院:交换代数及其与代数几何、表示论和物理学的相互作用;
- 批准号:
1123059 - 财政年份:2012
- 资助金额:
$ 9.8万 - 项目类别:
Standard Grant
Studies in Commutative Algebra and Algebraic Geometry
交换代数和代数几何研究
- 批准号:
0901145 - 财政年份:2009
- 资助金额:
$ 9.8万 - 项目类别:
Continuing Grant
Studies in Commutative Algebra and Algebraic Geometry
交换代数和代数几何研究
- 批准号:
0400633 - 财政年份:2004
- 资助金额:
$ 9.8万 - 项目类别:
Continuing Grant