Geometric and Analytic Problems in Several Complex Variables
多个复杂变量的几何和解析问题
基本信息
- 批准号:0400880
- 负责人:
- 金额:$ 25.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-07-01 至 2008-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACT:Rothschild and BaouendiA basic geometric and analytic problem in several complex variables is to determine when two real manifolds in multidimensional complex space are equivalent under an analytic transformation. The principal investigators will continue their research on several aspects of this fundamental problem. In particular, they will focus on determining when it is possible to reduce the equivalence problem to the much simpler one of solving systems of polynomial equations. They will also study which mappings between such manifolds are determined by finitely many derivatives at a given point. They expect that this study will lead to the discovery of new geometric, analytic, and algebraic properties of these important geometric objects. The study of the geometry of real manifolds in complex spaces is central to the field of several complex variables and to other areas of science, including geometry, mathematical physics and engineering. Progress on the problems proposed will likely have impact on these areas as well.
摘要:Rothschild和Baouendia多复变空间中的一个基本几何和解析问题是确定多维复空间中的两个真实的流形在解析变换下何时等价。主要研究人员将继续对这一基本问题的几个方面进行研究。特别是,他们将专注于确定何时可以将等价问题简化为求解多项式方程组的简单得多的问题。他们还将研究这些流形之间的映射是由给定点的许多导数决定的。他们希望这项研究将导致发现这些重要几何对象的新的几何,分析和代数性质。复空间中真实的流形的几何研究是多复变领域和其他科学领域的核心,包括几何学、数学物理学和工程学。在所提出的问题上取得的进展也可能对这些领域产生影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Linda Rothschild其他文献
Linda Rothschild的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Linda Rothschild', 18)}}的其他基金
Geometric and Analytic Problems in Several Complex Variables and Partial Differential Equations
多复变量和偏微分方程的几何和解析问题
- 批准号:
0701070 - 财政年份:2007
- 资助金额:
$ 25.6万 - 项目类别:
Continuing Grant
Geometric and Analytic Problems in Several Complex Variables
多个复杂变量的几何和解析问题
- 批准号:
0100330 - 财政年份:2001
- 资助金额:
$ 25.6万 - 项目类别:
Continuing Grant
Geometric and Analytic Problems in Several Complex Variables and Partial Differential Equations
多复变量和偏微分方程的几何和解析问题
- 批准号:
9801258 - 财政年份:1998
- 资助金额:
$ 25.6万 - 项目类别:
Continuing Grant
Mathematical Sciences: Geometric and Analytic Problems in Several Complex Variables and Partial Equations
数学科学:多个复变量和偏方程的几何和解析问题
- 批准号:
9501516 - 财政年份:1995
- 资助金额:
$ 25.6万 - 项目类别:
Continuing Grant
Mathematical Sciences: Problems in Several Complex Variablesand Partial Differential Equations.
数学科学:多个复变量和偏微分方程中的问题。
- 批准号:
9203973 - 财政年份:1992
- 资助金额:
$ 25.6万 - 项目类别:
Continuing Grant
Mathematical Sciences: Southern California Analysis & Partial Differential Equations Seminar
数学科学:南加州分析
- 批准号:
9204937 - 财政年份:1992
- 资助金额:
$ 25.6万 - 项目类别:
Standard Grant
Mathematical Sciences: Several Complex Variables and PartialDifferential Equations
数学科学:多个复变量和偏微分方程
- 批准号:
8901268 - 财政年份:1989
- 资助金额:
$ 25.6万 - 项目类别:
Continuing Grant
Mathematical Sciences: Analyticity of Solutions of Partial Differential Equations and Holomorphic Extendability
数学科学:偏微分方程解的解析性和全纯可拓性
- 批准号:
8601260 - 财政年份:1986
- 资助金额:
$ 25.6万 - 项目类别:
Continuing Grant
Mathematical Sciences: Existence, Smoothness and Analyticityfor Solutions of Some Linear Partial Differential Equations
数学科学:某些线性偏微分方程解的存在性、光滑性和解析性
- 批准号:
8319819 - 财政年份:1984
- 资助金额:
$ 25.6万 - 项目类别:
Continuing Grant
Hypoelliptic Partial Differential Operators
亚椭圆偏微分算子
- 批准号:
7701155 - 财政年份:1977
- 资助金额:
$ 25.6万 - 项目类别:
Standard Grant
相似海外基金
Analytic and Geometric Methods in Inverse Problems and Imaging
反问题和成像中的解析和几何方法
- 批准号:
RGPIN-2016-06329 - 财政年份:2021
- 资助金额:
$ 25.6万 - 项目类别:
Discovery Grants Program - Individual
Analytic and Geometric Methods in Inverse Problems and Imaging
反问题和成像中的解析和几何方法
- 批准号:
RGPIN-2016-06329 - 财政年份:2020
- 资助金额:
$ 25.6万 - 项目类别:
Discovery Grants Program - Individual
Analytic and Geometric Methods in Inverse Problems and Imaging
反问题和成像中的解析和几何方法
- 批准号:
RGPIN-2016-06329 - 财政年份:2019
- 资助金额:
$ 25.6万 - 项目类别:
Discovery Grants Program - Individual
Analytic and Geometric Inverse Problems and Related Topics
解析和几何反问题及相关主题
- 批准号:
1815922 - 财政年份:2018
- 资助金额:
$ 25.6万 - 项目类别:
Standard Grant
Analytic and Geometric Methods in Inverse Problems and Imaging
反问题和成像中的解析和几何方法
- 批准号:
RGPIN-2016-06329 - 财政年份:2018
- 资助金额:
$ 25.6万 - 项目类别:
Discovery Grants Program - Individual
Analytic and Geometric Methods in Inverse Problems and Imaging
反问题和成像中的解析和几何方法
- 批准号:
RGPIN-2016-06329 - 财政年份:2017
- 资助金额:
$ 25.6万 - 项目类别:
Discovery Grants Program - Individual
Analytic and Geometric Methods in Inverse Problems and Imaging
反问题和成像中的解析和几何方法
- 批准号:
RGPIN-2016-06329 - 财政年份:2016
- 资助金额:
$ 25.6万 - 项目类别:
Discovery Grants Program - Individual
Geometric and Analytic Problems on Real Hypersurfaces
真实超曲面上的几何和解析问题
- 批准号:
1500142 - 财政年份:2015
- 资助金额:
$ 25.6万 - 项目类别:
Continuing Grant
Some Analytic and Geometric Problems of the Ricci Flow
里奇流的一些解析和几何问题
- 批准号:
0904432 - 财政年份:2009
- 资助金额:
$ 25.6万 - 项目类别:
Standard Grant
Geometric and Analytic Problems in Several Complex Variables and Partial Differential Equations
多复变量和偏微分方程的几何和解析问题
- 批准号:
0701070 - 财政年份:2007
- 资助金额:
$ 25.6万 - 项目类别:
Continuing Grant