Mathematical Sciences: Geometric and Analytic Problems in Several Complex Variables and Partial Equations

数学科学:多个复变量和偏方程的几何和解析问题

基本信息

  • 批准号:
    9501516
  • 负责人:
  • 金额:
    $ 21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1995
  • 资助国家:
    美国
  • 起止时间:
    1995-07-01 至 1999-06-30
  • 项目状态:
    已结题

项目摘要

DMS-9501516 Rothschild/Baouendi The investigators will study the geometry of real submanifolds in complex space. In particular, they will focus on geometric and analytic invariants of these manifolds under holomorphic changes of coordinates. Special consideration will be given to those manifolds globally defined by real polynomial equations. For many manifolds defined by the vanishing of real polynomials, any component of a holomorphic transformation from one such manifold to another must also be a root of a complex polynomial. Several complex variables arose at the beginning of the century as a natural outgrowth of studies of functions of one complex variable. It became clear early on that the theory differed widely from it predecessor. The underlying geometry was far more difficult to grasp and the function theory had far more affinity with partial differential operators of first order. It thus grew as a hybrid subject combining deep characteristics of differential geometry and differential equations. Many of the fundamental structures were defined in the last three decades. Current studies still concentrate on understanding these basic mathematical forms.
研究人员将研究复空间中实子流形的几何。特别地,他们将关注这些流形在全纯坐标变化下的几何不变量和解析不变量。将特别考虑由实多项式方程全局定义的流形。对于由实多项式的消失所定义的许多流形,从一个这样的流形到另一个这样的流形的全纯变换的任何分量也必须是复多项式的根。本世纪初出现了几个复变量,作为一个复变量函数研究的自然产物。很明显,这个理论与它的前身有很大的不同。底层的几何结构更难掌握,而函数理论与一阶偏微分算子的关系要密切得多。因此,它成长为一门混合学科,结合了微分几何和微分方程的深层特征。许多基本结构是在过去三十年中确定的。目前的研究仍然集中在理解这些基本的数学形式。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Linda Rothschild其他文献

Linda Rothschild的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Linda Rothschild', 18)}}的其他基金

Geometric and Analytic Problems in Several Complex Variables and Partial Differential Equations
多复变量和偏微分方程的几何和解析问题
  • 批准号:
    0701070
  • 财政年份:
    2007
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Geometric and Analytic Problems in Several Complex Variables
多个复杂变量的几何和解析问题
  • 批准号:
    0400880
  • 财政年份:
    2004
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Geometric and Analytic Problems in Several Complex Variables
多个复杂变量的几何和解析问题
  • 批准号:
    0100330
  • 财政年份:
    2001
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Geometric and Analytic Problems in Several Complex Variables and Partial Differential Equations
多复变量和偏微分方程的几何和解析问题
  • 批准号:
    9801258
  • 财政年份:
    1998
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Problems in Several Complex Variablesand Partial Differential Equations.
数学科学:多个复变量和偏微分方程中的问题。
  • 批准号:
    9203973
  • 财政年份:
    1992
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Southern California Analysis & Partial Differential Equations Seminar
数学科学:南加州分析
  • 批准号:
    9204937
  • 财政年份:
    1992
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Several Complex Variables and PartialDifferential Equations
数学科学:多个复变量和偏微分方程
  • 批准号:
    8901268
  • 财政年份:
    1989
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Analyticity of Solutions of Partial Differential Equations and Holomorphic Extendability
数学科学:偏微分方程解的解析性和全纯可拓性
  • 批准号:
    8601260
  • 财政年份:
    1986
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Existence, Smoothness and Analyticityfor Solutions of Some Linear Partial Differential Equations
数学科学:某些线性偏微分方程解的存在性、光滑性和解析性
  • 批准号:
    8319819
  • 财政年份:
    1984
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Hypoelliptic Partial Differential Operators
亚椭圆偏微分算子
  • 批准号:
    7701155
  • 财政年份:
    1977
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant

相似国自然基金

Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
SCIENCE CHINA: Earth Sciences
  • 批准号:
    41224003
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21224005
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51224001
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
  • 批准号:
    81024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
  • 批准号:
    41024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

CBMS Conference: Topological and Geometric Methods in Quantum Field Theory NSF-CBMS Regional Conference in the Mathematical Sciences
CBMS 会议:量子场论中的拓扑和几何方法 NSF-CBMS 数学科学区域会议
  • 批准号:
    1642636
  • 财政年份:
    2016
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Geometric methods in the representation theory of affine Hecke algebras, finite reductive groups and character sheaves
数学科学:仿射 Hecke 代数、有限约简群和特征轮表示论中的几何方法
  • 批准号:
    1303060
  • 财政年份:
    2013
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Geometric methods in the representation theory of affine Hecke algebras, finite reductive groups and quantum groups
数学科学:仿射 Hecke 代数、有限约简群和量子群表示论中的几何方法
  • 批准号:
    0758262
  • 财政年份:
    2008
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
NSF/CBMS Regional Research Conference in Mathematical Sciences on Geometric Graph Theory, May 28 2002-June 1 2002, UNT
NSF/CBMS 几何图论数学科学区域研究会议,2002 年 5 月 28 日-2002 年 6 月 1 日,UNT
  • 批准号:
    0121729
  • 财政年份:
    2001
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Stabilized Geometric Integrators with Applications to Molecular Simulation
数学科学:稳定几何积分器及其在分子模拟中的应用
  • 批准号:
    9627330
  • 财政年份:
    1997
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Mathematical Sciences: On Some Geometric Constructions and On the Properties of the Kerr Black Hole
数学科学:关于一些几何结构和克尔黑洞的性质
  • 批准号:
    9704338
  • 财政年份:
    1997
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Geometric Properties of Solutions of Partial Differential Equations
数学科学:偏微分方程解的几何性质
  • 批准号:
    9896161
  • 财政年份:
    1997
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Harmonic Measure, Conformal Mappings, and Geometric Measure Theory
数学科学:调和测度、共形映射和几何测度理论
  • 批准号:
    9706875
  • 财政年份:
    1997
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Algebraic, Geometric and Combinatorial Structures Related to Multivariate Hypergeometric Functions
数学科学:与多元超几何函数相关的代数、几何和组合结构
  • 批准号:
    9625511
  • 财政年份:
    1996
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing grant
Mathematical Sciences: Weak Solutions of Geometric Evolution Equations
数学科学:几何演化方程的弱解
  • 批准号:
    9626405
  • 财政年份:
    1996
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了