Mathematical Sciences: Problems in Several Complex Variablesand Partial Differential Equations.
数学科学:多个复变量和偏微分方程中的问题。
基本信息
- 批准号:9203973
- 负责人:
- 金额:$ 18.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1992
- 资助国家:美国
- 起止时间:1992-06-01 至 1996-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Work on this project continues mathematical research into problems relating solutions of partial differential equations with mappings defined on surfaces in spaces of several complex variables. The general Cauchy-Riemann equations which test for analyticity are expressed as first-order differential expressions. In studying these expressions one tries to decide whether functions defined on surfaces and boundaries of domains can be extended as holomorphic functions to regions adjacent to the surfaces. A fundamental tool in these studies is the embedding of analytic discs into complex spaces of higher dimension with their boundaries going into real hypersurfaces or more general submanifolds. The vanishing or nonvanishing of the differential of such disc mappings has far-reaching implications in the study of mappings of hypersurfaces as well as to the extension problem already mentioned. Ultimately the research seeks to reveal more about mappings between manifolds, in particular to determine new geometric and algebraic invariants preserved under biholomorphic transformations. A second line of investigation follows from the recent completion of a succession of papers leading to the complete resolution of one of the fundamental extendibility questions raised by Lewy in the mid-50's: minimality of a generic manifold at a point is necessary and sufficient to guarantee that every Cauchy-Riemann function near the point extends holomorphically to a wedge. A description of the wedge of extendibility is unknown even in simple cases. Work will be done in finding a geometric description of the wedge of extendibility. Partial differential equations form the backbone of mathematical modeling in the physical sciences. Phenomena which involve continuous change such as that seen in motion, materials and energy are known to obey certain general laws which are expressible in terms of the interactions and relationships between partial derivatives. The key role of mathematics is not to state the relationships, but rather, to extract qualitative and quantitative meaning from them.
这个项目的工作继续对偏微分方程解与定义在多个复变量空间中的曲面上的映射相关的问题进行数学研究。检验解析性的一般柯西-黎曼方程被表示为一阶微分式。在研究这些表达式时,人们试图确定定义在曲面和区域边界上的函数是否可以作为全纯函数扩展到与曲面相邻的区域。在这些研究中的一个基本工具是将解析圆盘嵌入到高维复数空间中,其边界进入实超曲面或更一般的子流形。这类圆盘映射的微分的消失或不消失,对超曲面映射的研究以及前面提到的扩张问题都有着深远的影响。最终,这项研究试图揭示更多关于流形之间的映射,特别是确定在双全纯变换下保持的新的几何和代数不变量。第二方面的研究来自最近完成的一系列论文,这些论文导致了50年代中期S提出的一个基本可扩性问题的完全解决:泛型流形在一点的极小性是保证在该点附近的每个柯西-黎曼函数全纯扩张到一个楔形的充要条件。即使在简单的情况下,对可扩展性楔形的描述也是未知的。将在寻找可伸缩性楔形的几何描述方面进行工作。偏微分方程式是物理科学中数学建模的基础。人们知道,涉及运动、材料和能量等连续变化的现象遵循某些一般规律,这些规律可以用偏导数之间的相互作用和关系来表示。数学的关键作用不是描述关系,而是从它们中提取定性和定量的意义。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Linda Rothschild其他文献
Linda Rothschild的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Linda Rothschild', 18)}}的其他基金
Geometric and Analytic Problems in Several Complex Variables and Partial Differential Equations
多复变量和偏微分方程的几何和解析问题
- 批准号:
0701070 - 财政年份:2007
- 资助金额:
$ 18.3万 - 项目类别:
Continuing Grant
Geometric and Analytic Problems in Several Complex Variables
多个复杂变量的几何和解析问题
- 批准号:
0400880 - 财政年份:2004
- 资助金额:
$ 18.3万 - 项目类别:
Continuing Grant
Geometric and Analytic Problems in Several Complex Variables
多个复杂变量的几何和解析问题
- 批准号:
0100330 - 财政年份:2001
- 资助金额:
$ 18.3万 - 项目类别:
Continuing Grant
Geometric and Analytic Problems in Several Complex Variables and Partial Differential Equations
多复变量和偏微分方程的几何和解析问题
- 批准号:
9801258 - 财政年份:1998
- 资助金额:
$ 18.3万 - 项目类别:
Continuing Grant
Mathematical Sciences: Geometric and Analytic Problems in Several Complex Variables and Partial Equations
数学科学:多个复变量和偏方程的几何和解析问题
- 批准号:
9501516 - 财政年份:1995
- 资助金额:
$ 18.3万 - 项目类别:
Continuing Grant
Mathematical Sciences: Southern California Analysis & Partial Differential Equations Seminar
数学科学:南加州分析
- 批准号:
9204937 - 财政年份:1992
- 资助金额:
$ 18.3万 - 项目类别:
Standard Grant
Mathematical Sciences: Several Complex Variables and PartialDifferential Equations
数学科学:多个复变量和偏微分方程
- 批准号:
8901268 - 财政年份:1989
- 资助金额:
$ 18.3万 - 项目类别:
Continuing Grant
Mathematical Sciences: Analyticity of Solutions of Partial Differential Equations and Holomorphic Extendability
数学科学:偏微分方程解的解析性和全纯可拓性
- 批准号:
8601260 - 财政年份:1986
- 资助金额:
$ 18.3万 - 项目类别:
Continuing Grant
Mathematical Sciences: Existence, Smoothness and Analyticityfor Solutions of Some Linear Partial Differential Equations
数学科学:某些线性偏微分方程解的存在性、光滑性和解析性
- 批准号:
8319819 - 财政年份:1984
- 资助金额:
$ 18.3万 - 项目类别:
Continuing Grant
Hypoelliptic Partial Differential Operators
亚椭圆偏微分算子
- 批准号:
7701155 - 财政年份:1977
- 资助金额:
$ 18.3万 - 项目类别:
Standard Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
The Mathematical and Computational Modelling of Various Problems in the Life Sciences
生命科学中各种问题的数学和计算建模
- 批准号:
RGPIN-2020-05115 - 财政年份:2022
- 资助金额:
$ 18.3万 - 项目类别:
Discovery Grants Program - Individual
The Mathematical and Computational Modelling of Various Problems in the Life Sciences
生命科学中各种问题的数学和计算建模
- 批准号:
RGPIN-2020-05115 - 财政年份:2021
- 资助金额:
$ 18.3万 - 项目类别:
Discovery Grants Program - Individual
The Mathematical and Computational Modelling of Various Problems in the Life Sciences
生命科学中各种问题的数学和计算建模
- 批准号:
RGPIN-2020-05115 - 财政年份:2020
- 资助金额:
$ 18.3万 - 项目类别:
Discovery Grants Program - Individual
The Mathematical Modelling of Various Problems arising in the Biomedical Sciences
生物医学科学中出现的各种问题的数学建模
- 批准号:
RGPIN-2014-04772 - 财政年份:2018
- 资助金额:
$ 18.3万 - 项目类别:
Discovery Grants Program - Individual
The Mathematical Modelling of Various Problems arising in the Biomedical Sciences
生物医学科学中出现的各种问题的数学建模
- 批准号:
RGPIN-2014-04772 - 财政年份:2017
- 资助金额:
$ 18.3万 - 项目类别:
Discovery Grants Program - Individual
REU Site: Summer Undergraduate Research for Students who are Deaf or Hard-of-Hearing in Applying Mathematical and Statistical Methods to Problems from the Sciences
REU 网站:针对聋哑或听力障碍学生应用数学和统计方法解决科学问题的暑期本科生研究
- 批准号:
1659299 - 财政年份:2017
- 资助金额:
$ 18.3万 - 项目类别:
Standard Grant
The Mathematical Modelling of Various Problems arising in the Biomedical Sciences
生物医学科学中出现的各种问题的数学建模
- 批准号:
RGPIN-2014-04772 - 财政年份:2016
- 资助金额:
$ 18.3万 - 项目类别:
Discovery Grants Program - Individual
The Mathematical Modelling of Various Problems arising in the Biomedical Sciences
生物医学科学中出现的各种问题的数学建模
- 批准号:
RGPIN-2014-04772 - 财政年份:2015
- 资助金额:
$ 18.3万 - 项目类别:
Discovery Grants Program - Individual
The Mathematical Modelling of Various Problems arising in the Biomedical Sciences
生物医学科学中出现的各种问题的数学建模
- 批准号:
RGPIN-2014-04772 - 财政年份:2014
- 资助金额:
$ 18.3万 - 项目类别:
Discovery Grants Program - Individual
NSF/CBMS Regional Conference in the Mathematical Sciences: Uncertainty Principles in Harmonic Analysis: Gap and Type Problems
NSF/CBMS 数学科学区域会议:调和分析中的不确定性原理:间隙和类型问题
- 批准号:
1241272 - 财政年份:2012
- 资助金额:
$ 18.3万 - 项目类别:
Standard Grant