Regularity Problems for Multiple Integrals and Interfacial Coarsening for Energy-Driven Models

能量驱动模型的多重积分和界面粗化的正则问题

基本信息

  • 批准号:
    0401048
  • 负责人:
  • 金额:
    $ 8.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-06-01 至 2008-05-31
  • 项目状态:
    已结题

项目摘要

Proposal DMS-0401048PI: Xiaodong Yan, Michigan State UniversityTitle: Regularity properties for multiple integrals and interfacial coarsening for energy-driven models The proposal addresses problems in three main areas.In part one, we are concerned with regularity property ofminimizers of uniformly convex functionals. The objectiveis to generalize method used in previous work of Sverak andPI to construct counterexamples in lower target dimensions,as well as to understand regularity property of minimizersunder further assumptions on the integrand. The second partdeals with regularity property of minimizers for bothcompressible and incompressible models from nonlinear elasticity.The main feature here is the singular behavior of the integrandin the compressible case and nonlinear nonconvex constraint inthe incompressible case. Currently there is no general method todeal with regularity problems for such integral. We hope thatthe simple model problems studied in this project can help togain insight into more general cases. The third part addressesinterfacial coarsening phenomenon observed in many energy-drivenmodels from materials science. In particular, the aim is to providerigorous analysis on the value of the coarsening exponent for differentmodels. The analysis is closely related to deep and interesting issuesin calculus of variations, e.g.gamma limit of singularly perturbedvariational problems. The well developed tools from those areas provide abetter vision on the last project. The questions to be studied are motivated both by classical theory ofoptimization and contemporary issues in nonlinear elasticity and materialsscience. An outstanding open question in continuum mechanics is to determinewhat singularities might exist in surfaces which optimize a collection ofnonlinear constraints. Knowledge of this type can help in the design ofexotic materials. The study of coarsening is important for both bulk andthin film materials. Such materials are of great practical interest. Forexample, superconducting thin film devices are presently being evaluated forpossible use in high-performance microwave filters and other applications.
提案DMS-0401048PI:严晓东,密歇根州立大学标题:多重积分的正则性和能量驱动模型的界面粗化该提案主要解决三个方面的问题。在第一部分,我们讨论一致凸泛函的极小元的正则性。目的是推广Sverak和PI以前工作中使用的方法,在较低的目标维度上构造反例,并在被积函数的进一步假设下理解极小值的正则性。第二部分从非线性弹性的角度讨论了可压缩和不可压缩模型极小值的正则性,主要特征是可压缩情况下被积分项的奇异行为和不可压缩情况下非线性非凸约束的奇异行为。对于这类积分的正则性问题,目前还没有通用的处理方法。我们希望这个项目中研究的简单模型问题可以帮助我们深入了解更一般的情况。第三部分介绍了材料科学中许多能量驱动模型中观察到的界面粗化现象。具体地说,目的是对不同模型的粗化指数的值进行粗略的分析。这一分析与变分中深刻而有趣的问题密切相关,例如奇摄动变分问题的Gamma极限。来自这些领域的开发良好的工具为最后一个项目提供了更好的愿景。所要研究的问题既有经典的最优化理论,也有非线性弹性和材料科学的当代问题。连续介质力学中一个突出的悬而未决的问题是确定优化一组非线性约束的曲面中可能存在什么奇点。这类知识可以帮助设计奇异的材料。粗化研究对块体材料和薄膜材料都具有重要意义。这种材料具有很大的实用价值。例如,超导薄膜器件目前正在评估在高性能微波滤波器和其他应用中的可能性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaodong Yan其他文献

Investigation research of gasoline direct injection on spray performance and combustion process for free piston linear generator with dual cylinder configuration
汽油直喷对双缸自由活塞直线发电机喷雾性能及燃烧过程的考察研究
  • DOI:
    10.1016/j.fuel.2020.119657
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Xiaodong Yan;Huihua Feng;Zhiyuan Zhang;Liminy Wu;Wei Wang
  • 通讯作者:
    Wei Wang
The Structure of a T=169d Algal Virus, PBCV-1, at 15Â Resolution
T=169d 藻类病毒 PBCV-1 的结构(分辨率为 15)
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Xiaodong Yan;V. Bowman;N. Olson;J. Gurnon;J. L. Etten;M. Rossmann;T. Baker
  • 通讯作者:
    T. Baker
High Homogeneity of Magnesium Doped LiNbO3 Crystals Grown by Bridgman Method
布里奇曼法生长的镁掺杂 LiNbO3 晶体的高均匀性
  • DOI:
    10.3390/cryst10020071
  • 发表时间:
    2020-01
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Xiaodong Yan;Tian Tian;Menghui Wang;Hui Shen;Ding Zhou;Yan Zhang;Jiayue Xu
  • 通讯作者:
    Jiayue Xu
Composition-driven phase boundary and its energy harvesting performance of BCZT lead–free piezoelectric ceramic
BCZT无铅压电陶瓷的成分驱动相界及其能量收集性能
  • DOI:
    10.1016/j.jeurceramsoc.2017.02.049
  • 发表时间:
    2017-07
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Xiaodong Yan;Mupeng Zheng;Yudong Hou;Mankang Zhu
  • 通讯作者:
    Mankang Zhu
Cerium oxide carbonate/nickel hydroxide hybrid nanowires with enhanced performance and stability for urea electrooxidation
具有增强尿素电氧化性能和稳定性的氧化碳酸铈/氢氧化镍杂化纳米线
  • DOI:
    10.1016/j.jelechem.2021.115457
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Zhe Zhang;Xiaodong Yan;Zhi-Guo Gu
  • 通讯作者:
    Zhi-Guo Gu

Xiaodong Yan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaodong Yan', 18)}}的其他基金

Nonlinear Theory for Smectics and Layered Solutions in Thin Films
薄膜中近晶和层状溶液的非线性理论
  • 批准号:
    2306393
  • 财政年份:
    2023
  • 资助金额:
    $ 8.91万
  • 项目类别:
    Standard Grant
Critical points of variational integrals
变分积分的临界点
  • 批准号:
    0805582
  • 财政年份:
    2007
  • 资助金额:
    $ 8.91万
  • 项目类别:
    Standard Grant
Critical points of variational integrals
变分积分的临界点
  • 批准号:
    0700966
  • 财政年份:
    2007
  • 资助金额:
    $ 8.91万
  • 项目类别:
    Standard Grant

相似海外基金

Multiple independent NMR dimensions: smart experiments for complicated problems
多个独立的 NMR 维度:复杂问题的智能实验
  • 批准号:
    EP/X035476/1
  • 财政年份:
    2023
  • 资助金额:
    $ 8.91万
  • 项目类别:
    Research Grant
Simulation-based multiple inference problems: theory and application
基于仿真的多重推理问题:理论与应用
  • 批准号:
    RGPIN-2019-06114
  • 财政年份:
    2022
  • 资助金额:
    $ 8.91万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: CNS Core: Medium: Towards Understanding and Handling Problems Due to Coexistence of Multiple IoT Platforms
合作研究:CNS核心:媒介:理解和处理多个物联网平台共存带来的问题
  • 批准号:
    2310322
  • 财政年份:
    2022
  • 资助金额:
    $ 8.91万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Towards Understanding and Handling Problems Due to Coexistence of Multiple IoT Platforms
合作研究:CNS核心:媒介:理解和处理多个物联网平台共存带来的问题
  • 批准号:
    2106978
  • 财政年份:
    2021
  • 资助金额:
    $ 8.91万
  • 项目类别:
    Standard Grant
Simulation-based multiple inference problems: theory and application
基于仿真的多重推理问题:理论与应用
  • 批准号:
    RGPIN-2019-06114
  • 财政年份:
    2021
  • 资助金额:
    $ 8.91万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: CNS Core: Medium: Towards Understanding and Handling Problems Due to Coexistence of Multiple IoT Platforms
合作研究:CNS核心:媒介:理解和处理多个物联网平台共存带来的问题
  • 批准号:
    2107093
  • 财政年份:
    2021
  • 资助金额:
    $ 8.91万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Towards Understanding and Handling Problems Due to Coexistence of Multiple IoT Platforms
合作研究:CNS核心:媒介:理解和处理多个物联网平台共存带来的问题
  • 批准号:
    2205868
  • 财政年份:
    2021
  • 资助金额:
    $ 8.91万
  • 项目类别:
    Standard Grant
Simulation-based multiple inference problems: theory and application
基于仿真的多重推理问题:理论与应用
  • 批准号:
    RGPIN-2019-06114
  • 财政年份:
    2020
  • 资助金额:
    $ 8.91万
  • 项目类别:
    Discovery Grants Program - Individual
Acoustic Inverse Problems with Single and Multiple Measurements
单次和多次测量的声学反演问题
  • 批准号:
    2006881
  • 财政年份:
    2020
  • 资助金额:
    $ 8.91万
  • 项目类别:
    Continuing Grant
Maximum independent set and dominating set problems underlying multiple access communication codes
多址通信码的最大独立集和支配集问题
  • 批准号:
    20K03715
  • 财政年份:
    2020
  • 资助金额:
    $ 8.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了