Nonlinear Theory for Smectics and Layered Solutions in Thin Films
薄膜中近晶和层状溶液的非线性理论
基本信息
- 批准号:2306393
- 负责人:
- 金额:$ 19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Many physical phenomena in continuum mechanics and materials science are modeled by partial differential equations. The challenge of understanding the different behaviors observed from experiments can be posed as understanding the behavior of the solutions of the corresponding partial differential equations. This project involves the mathematical analysis of nonlinear models that originated in active fields of physics and materials science. The emphasis is on the study of the limiting behavior of nonlinear models for smectic A liquid crystals and of the symmetry properties of layer solutions to thin film equations, so to add insights to classical models from materials science and help explain some long-observed phenomena in experiments. The project will offer cross-disciplinary training opportunities for graduate and undergraduate students.The project is divided in two main parts. In the first part, the investigator will study nonlinear models for smectic A liquid crystals. Starting from a nonlinear approximation energy model the investigator will address the compactness of sequences with bounded energy and consider the gamma limit of the model when sending the liquid crystal penetration length to zero. The investigator will next extend these results to the fully nonlinear energy model and study the properties of some explicit examples which are solutions of the associated Euler-Lagrange equation. The second part addresses layer solutions for two-dimensional thin film models, with an emphasis on their one-dimensional symmetry. This study is closely related to De Giorgi's conjecture on the one-dimensional symmetry of layer solutions to the Allen-Cahn equation. The extension to the thin film models is challenging due to the vectorial and nonlocal feature of the phenomena.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
连续介质力学和材料科学中的许多物理现象都是用偏微分方程来描述的。理解从实验中观察到的不同行为的挑战可以被视为理解相应的偏微分方程的解的行为。该项目涉及起源于物理学和材料科学活跃领域的非线性模型的数学分析。 重点是研究近晶A型液晶非线性模型的极限行为和薄膜方程层解的对称性,从而为材料科学的经典模型提供见解,并有助于解释实验中长期观察到的一些现象。 该项目将为研究生和本科生提供跨学科的培训机会。该项目分为两个主要部分。在第一部分中,研究者将研究近晶A相液晶的非线性模型。从一个非线性近似能量模型开始,调查员将解决与有界能量的序列的紧凑性,并考虑发送液晶渗透长度为零时,该模型的伽马极限。接下来,研究人员将这些结果扩展到完全非线性能量模型,并研究一些明确的例子,这是相关的欧拉-拉格朗日方程的解决方案的属性。第二部分解决二维薄膜模型的层的解决方案,强调他们的一维对称性。本研究与De Giorgi关于Allen-Cahn方程层解的一维对称性的猜想密切相关。薄膜模型的扩展是具有挑战性的,由于矢量和非本地的功能的现象。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaodong Yan其他文献
Investigation research of gasoline direct injection on spray performance and combustion process for free piston linear generator with dual cylinder configuration
汽油直喷对双缸自由活塞直线发电机喷雾性能及燃烧过程的考察研究
- DOI:
10.1016/j.fuel.2020.119657 - 发表时间:
2020-11 - 期刊:
- 影响因子:7.4
- 作者:
Xiaodong Yan;Huihua Feng;Zhiyuan Zhang;Liminy Wu;Wei Wang - 通讯作者:
Wei Wang
The Structure of a T=169d Algal Virus, PBCV-1, at 15Â Resolution
T=169d 藻类病毒 PBCV-1 的结构(分辨率为 15)
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:2.8
- 作者:
Xiaodong Yan;V. Bowman;N. Olson;J. Gurnon;J. L. Etten;M. Rossmann;T. Baker - 通讯作者:
T. Baker
High Homogeneity of Magnesium Doped LiNbO3 Crystals Grown by Bridgman Method
布里奇曼法生长的镁掺杂 LiNbO3 晶体的高均匀性
- DOI:
10.3390/cryst10020071 - 发表时间:
2020-01 - 期刊:
- 影响因子:2.7
- 作者:
Xiaodong Yan;Tian Tian;Menghui Wang;Hui Shen;Ding Zhou;Yan Zhang;Jiayue Xu - 通讯作者:
Jiayue Xu
Composition-driven phase boundary and its energy harvesting performance of BCZT lead–free piezoelectric ceramic
BCZT无铅压电陶瓷的成分驱动相界及其能量收集性能
- DOI:
10.1016/j.jeurceramsoc.2017.02.049 - 发表时间:
2017-07 - 期刊:
- 影响因子:5.7
- 作者:
Xiaodong Yan;Mupeng Zheng;Yudong Hou;Mankang Zhu - 通讯作者:
Mankang Zhu
Cerium oxide carbonate/nickel hydroxide hybrid nanowires with enhanced performance and stability for urea electrooxidation
具有增强尿素电氧化性能和稳定性的氧化碳酸铈/氢氧化镍杂化纳米线
- DOI:
10.1016/j.jelechem.2021.115457 - 发表时间:
2021-06 - 期刊:
- 影响因子:4.5
- 作者:
Zhe Zhang;Xiaodong Yan;Zhi-Guo Gu - 通讯作者:
Zhi-Guo Gu
Xiaodong Yan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaodong Yan', 18)}}的其他基金
Regularity Problems for Multiple Integrals and Interfacial Coarsening for Energy-Driven Models
能量驱动模型的多重积分和界面粗化的正则问题
- 批准号:
0401048 - 财政年份:2004
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
A statistical decision theory of cognitive capacity
认知能力的统计决策理论
- 批准号:
DP240101511 - 财政年份:2024
- 资助金额:
$ 19万 - 项目类别:
Discovery Projects
Numerical simulations of lattice field theory
晶格场论的数值模拟
- 批准号:
2902259 - 财政年份:2024
- 资助金额:
$ 19万 - 项目类别:
Studentship
Dynamical Approaches to Number Theory and Additive Combinatorics
数论和加法组合学的动态方法
- 批准号:
EP/Y014030/1 - 财政年份:2024
- 资助金额:
$ 19万 - 项目类别:
Research Grant
Non-perturbative Conformal Field Theory in Quantum Gravity and the Laboratory (Exact CFT)
量子引力中的非微扰共形场论和实验室(精确 CFT)
- 批准号:
EP/Z000106/1 - 财政年份:2024
- 资助金额:
$ 19万 - 项目类别:
Research Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 19万 - 项目类别:
Continuing Grant
AF: Small: Problems in Algorithmic Game Theory for Online Markets
AF:小:在线市场的算法博弈论问题
- 批准号:
2332922 - 财政年份:2024
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Conference: Pittsburgh Links among Analysis and Number Theory (PLANT)
会议:匹兹堡分析与数论之间的联系 (PLANT)
- 批准号:
2334874 - 财政年份:2024
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Conference: 9th Lake Michigan Workshop on Combinatorics and Graph Theory
会议:第九届密歇根湖组合学和图论研讨会
- 批准号:
2349004 - 财政年份:2024
- 资助金额:
$ 19万 - 项目类别:
Standard Grant