Critical points of variational integrals
变分积分的临界点
基本信息
- 批准号:0805582
- 负责人:
- 金额:$ 9.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-10-01 至 2012-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Critical Points of Variational IntegralsAbstract of Proposed Research Xiaodong YanThis project is to study the regularity of critical points of multiple integrals in the calculus of variations; especially some of the integrands that arise from nonlinear elasticity. Also some questions that generalize well-known results in classical analysis. One project is to investigate conditions on the integrands that guarantee certain partial regularity of critical points. In particular the regularity of certain systems that are models in nonlinear elasticity will be studied. This will include both compressible and incompressible materials. Another project is to study the regularity and qualitative properties of the solutions of certain systems of nonlinear integral equations. These systems are closely related to the systems that arise in the Hardy-Littlewood-Sobolev inequality.The questions to be studied in this project are important technical results in analysis and the calculus of variations. Any results would be of considerable interest as there has been much research on these, and related, subjects during the last twenty years. The problems in nonlinear elasticity may lead to insights into the behavior of exotic materials while the other problems may be of importance for some questions in geometry.
变分积分的临界点建议研究摘要严晓东本项目研究变分学中多重积分临界点的规律性,特别是非线性弹性力学中的一些被积函数。同时也推广了经典分析中的一些著名结果。一个项目是研究保证临界点部分正则的被积函数的条件。特别是在非线性弹性模型的某些系统的规律性将被研究。这将包括可压缩和不可压缩材料。另一个项目是研究某些非线性积分方程组解的正则性和定性性质。这些系统与Hardy-Littlewood-Sobolev不等式中的系统密切相关,所研究的问题是变分分析中的重要技术结果。任何结果都将是相当大的兴趣,因为在过去的二十年里,对这些问题和相关问题进行了大量的研究。非线性弹性力学中的问题可能导致对奇异材料行为的深入了解,而其他问题可能对几何中的某些问题具有重要意义。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaodong Yan其他文献
The Structure of a T=169d Algal Virus, PBCV-1, at 15Â Resolution
T=169d 藻类病毒 PBCV-1 的结构(分辨率为 15)
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:2.8
- 作者:
Xiaodong Yan;V. Bowman;N. Olson;J. Gurnon;J. L. Etten;M. Rossmann;T. Baker - 通讯作者:
T. Baker
High Homogeneity of Magnesium Doped LiNbO3 Crystals Grown by Bridgman Method
布里奇曼法生长的镁掺杂 LiNbO3 晶体的高均匀性
- DOI:
10.3390/cryst10020071 - 发表时间:
2020-01 - 期刊:
- 影响因子:2.7
- 作者:
Xiaodong Yan;Tian Tian;Menghui Wang;Hui Shen;Ding Zhou;Yan Zhang;Jiayue Xu - 通讯作者:
Jiayue Xu
Composition-driven phase boundary and its energy harvesting performance of BCZT lead–free piezoelectric ceramic
BCZT无铅压电陶瓷的成分驱动相界及其能量收集性能
- DOI:
10.1016/j.jeurceramsoc.2017.02.049 - 发表时间:
2017-07 - 期刊:
- 影响因子:5.7
- 作者:
Xiaodong Yan;Mupeng Zheng;Yudong Hou;Mankang Zhu - 通讯作者:
Mankang Zhu
Investigation research of gasoline direct injection on spray performance and combustion process for free piston linear generator with dual cylinder configuration
汽油直喷对双缸自由活塞直线发电机喷雾性能及燃烧过程的考察研究
- DOI:
10.1016/j.fuel.2020.119657 - 发表时间:
2020-11 - 期刊:
- 影响因子:7.4
- 作者:
Xiaodong Yan;Huihua Feng;Zhiyuan Zhang;Liminy Wu;Wei Wang - 通讯作者:
Wei Wang
Cerium oxide carbonate/nickel hydroxide hybrid nanowires with enhanced performance and stability for urea electrooxidation
具有增强尿素电氧化性能和稳定性的氧化碳酸铈/氢氧化镍杂化纳米线
- DOI:
10.1016/j.jelechem.2021.115457 - 发表时间:
2021-06 - 期刊:
- 影响因子:4.5
- 作者:
Zhe Zhang;Xiaodong Yan;Zhi-Guo Gu - 通讯作者:
Zhi-Guo Gu
Xiaodong Yan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaodong Yan', 18)}}的其他基金
Nonlinear Theory for Smectics and Layered Solutions in Thin Films
薄膜中近晶和层状溶液的非线性理论
- 批准号:
2306393 - 财政年份:2023
- 资助金额:
$ 9.63万 - 项目类别:
Standard Grant
Critical points of variational integrals
变分积分的临界点
- 批准号:
0700966 - 财政年份:2007
- 资助金额:
$ 9.63万 - 项目类别:
Standard Grant
Regularity Problems for Multiple Integrals and Interfacial Coarsening for Energy-Driven Models
能量驱动模型的多重积分和界面粗化的正则问题
- 批准号:
0401048 - 财政年份:2004
- 资助金额:
$ 9.63万 - 项目类别:
Standard Grant
相似国自然基金
光子人工微结构中Exceptional Points附近的模式耦合及相关新特性研究
- 批准号:11674247
- 批准年份:2016
- 资助金额:70.0 万元
- 项目类别:面上项目
用多重假设检验方法来研究方差变点问题
- 批准号:10901010
- 批准年份:2009
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Multidisciplinary analysis of financial reference points and wellbeing
财务参考点和福祉的多学科分析
- 批准号:
DP240101927 - 财政年份:2024
- 资助金额:
$ 9.63万 - 项目类别:
Discovery Projects
Exceptional Points Enhanced Acoustic Sensing of Biological Cells
特殊点增强生物细胞的声学传感
- 批准号:
2328407 - 财政年份:2024
- 资助金额:
$ 9.63万 - 项目类别:
Standard Grant
Chimella application for Sap points accreditation
Chimella 申请 Sap 积分认证
- 批准号:
10106576 - 财政年份:2024
- 资助金额:
$ 9.63万 - 项目类别:
Collaborative R&D
Exploring Tipping Points and Their Impacts Using Earth System Models (TipESM)
使用地球系统模型探索临界点及其影响 (TipESM)
- 批准号:
10090271 - 财政年份:2024
- 资助金额:
$ 9.63万 - 项目类别:
EU-Funded
TipESM: Exploring Tipping Points and Their Impacts Using Earth System Models
TipESM:使用地球系统模型探索临界点及其影响
- 批准号:
10103098 - 财政年份:2024
- 资助金额:
$ 9.63万 - 项目类别:
EU-Funded
Climate Tipping Points: Uncertainty-aware quantification of Earth system tipping potential from observations and models and assessment of associated climatic, ecological, and socioeconomic impacts
气候临界点:通过观测和模型以及对相关气候、生态和社会经济影响的评估,对地球系统潜在的不确定性进行量化
- 批准号:
10090795 - 财政年份:2024
- 资助金额:
$ 9.63万 - 项目类别:
EU-Funded
Optic: A solution to Events Related Terrorism and Event Security Pain Points
Optic:事件相关恐怖主义和事件安全痛点的解决方案
- 批准号:
10084791 - 财政年份:2023
- 资助金额:
$ 9.63万 - 项目类别:
Collaborative R&D
Development of a novel therapeutic drug targeting both MDM4 and PKC, critical points in uveal malignant melanoma
开发针对葡萄膜恶性黑色素瘤关键点 MDM4 和 PKC 的新型治疗药物
- 批准号:
23K09020 - 财政年份:2023
- 资助金额:
$ 9.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Social Tipping Points and Norm Change in Large-scale Laboratory Experiments
大规模实验室实验中的社会临界点和规范变化
- 批准号:
2242443 - 财政年份:2023
- 资助金额:
$ 9.63万 - 项目类别:
Standard Grant
First high-resolution studies of photospheric bright points as heating drivers: early DKIST science
首次对光球亮点作为加热驱动因素的高分辨率研究:早期 DKIST 科学
- 批准号:
2308075 - 财政年份:2023
- 资助金额:
$ 9.63万 - 项目类别:
Standard Grant