Studies in Operator Algebras

算子代数研究

基本信息

  • 批准号:
    0401043
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-07-01 至 2008-06-30
  • 项目状态:
    已结题

项目摘要

The proposer will continue his study of the longstanding Kadison--Ringroseconjecture on the cohomology of von Neumann algebras. He will use and refine some recently developed techniques needed to show the complete boundedness of certain multilinear operators. Investigations of the cohomologygroups have led naturally to the recently introduced concept of norming subalgebras, and this topic will be pursued since it applies directly to both cohomology and the bounded projection problem. In a different, but related, direction, maximal abelian subalgebras (masas) and general subalgebras of von Neumann algebras will be studied. In joint work, the proposer has introduced the concept of strongly singular masas, and has shown that many finite factors arising from hyperbolic groups (a class which includes the free groups) have such masas. The results so far obtained indicate that the theory can now expand to study general subalgebras. This relates directly to the structure of factors (the building blocks of operator algebras), and the overall goal of these proposed areas of research is to increase our understanding in this area. Building on previously accomplished work, problems in the theory of topological entropy for automorphisms will be studied. Automorphisms are the most basic objects associated to operator algebras, and they can reveal different facets of the same underlying object. The entropy is a numerical constant that distinguishes different automorphisms.Previous joint work of the proposer showed that the current theory, based on completely positive maps, can be better reformulated in terms of complete contractions. This puts the theory into a much more flexible situation where more general and powerful tools can be brought to bear on the problems of the field, notably relating to crossed products by automorphism groups. The modern study of operator algebras has evolved from two main sources. Matrices, which are generalizations of numbers, were introduced to solve equations and now find applications from computer graphics to search engines for the web. In formulating quantum mechanics mathematically, von Neumann found that he needed infinite dimensional versions of matrices called linear operators which were best studied in operator algebras. Moreover the time evolution of quantum mechanical systems came to be expressed in terms of the crossed product by groups of automorphisms, and here topological entropy plays an important role. The project is mainly concerned with the theoretical underpinnings of operator algebras, but the proposed work in these areas could impact some of these more concrete areas, since the finite factors are those operator algebras which most closely model matrices.
提议者将继续研究长期以来关于冯诺依曼代数上同调的卡迪森-环玫瑰猜想。他将使用和完善一些最近开发的技术来显示某些多线性算子的完全有界性。对上同调群的研究自然地引出了最近引入的规范子代数的概念,并且该主题将被继续研究,因为它直接适用于上同调和有界投影问题。在不同但相关的方向上,将研究冯诺依曼代数的最大阿贝尔子代数(masas)和一般子代数。在联合工作中,提议者引入了强奇异masas的概念,并证明了双曲群(包括自由群的一类)产生的许多有限因子都具有这样的masas。迄今为止获得的结果表明该理论现在可以扩展到研究一般子代数。这与因子的结构(算子代数的构建模块)直接相关,这些拟议研究领域的总体目标是增加我们对该领域的理解。在先前完成的工作的基础上,将研究自同构的拓扑熵理论中的问题。自同构是与算子代数相关的最基本的对象,它们可以揭示同一底层对象的不同方面。熵是一个区分不同自同构的数值常数。提议者之前的联合工作表明,基于完全正映射的当前理论可以更好地根据完全收缩来重新表述。这使该理论处于更加灵活的境地,可以使用更通用和更强大的工具来解决该领域的问题,特别是与自同构群的交叉积相关的问题。 现代算子代数的研究有两个主要来源。矩阵是数字的概括,最初是为了求解方程而引入的,现在它的应用范围从计算机图形学到网络搜索引擎。在以数学方式表述量子力学时,冯·诺依曼发现他需要称为线性算子的矩阵的无限维版本,这在算子代数中得到了最好的研究。此外,量子力学系统的时间演化开始用自同构群的叉积来表达,而拓扑熵在这里发挥了重要作用。该项目主要关注算子代数的理论基础,但这些领域拟议的工作可能会影响其中一些更具体的领域,因为有限因子是那些最接近模拟矩阵的算子代数。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Roger Smith其他文献

Welfare versus Justice - Again!
福利与正义——再次!
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Roger Smith
  • 通讯作者:
    Roger Smith
HPA axis in the late-gestation ovine fetus? Urocortin: a mechanism for the sustained activation of the
妊娠晚期羊胎儿的 HPA 轴?
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Challis;A. Holloway;D. Howe;G. Chan;V. Clifton;Roger Smith
  • 通讯作者:
    Roger Smith
Molecular Detection of Methicillin Resistant Staphylococcus Aureus Isolated From Hospital Patients and Food Handlers in FCT , North Central , Nigeria
尼日利亚中北部 FCT 医院患者和食品处理人员分离出的耐甲氧西林金黄色葡萄球菌的分子检测
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. M. Phillips;K. Krisciunas;N. Suntzeff;R. G. Abraham;M. G. Beckett;M. Bonati;P. Candia;T. Michael Corwin;D. Depoy;J. Espinoza;A. Firth;W. Freedman;G. Galaz;L. Germany;D. González;M. Hamuy;N. C. Hastings;Aimee L. Hungerford;Valentin D. Ivanov;Erika Labbé;R. Marzke;Patrick J. McCarthy;R. McMahon;R. Mcmillan;C. Muena;S. E. Persson;M. Roth;M. T. Ruiz;R. C. Smith;Roger Smith;L. Strolger;Christopher Stubbs
  • 通讯作者:
    Christopher Stubbs
Density functional study of Aun (n = 3–5) clusters on relaxed graphite surfaces
松弛石墨表面上 Aun (n = 3–5) 团簇的密度泛函研究
  • DOI:
    10.1016/j.susc.2004.11.044
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    G. Wang;J. BelBruno;S. Kenny;Roger Smith
  • 通讯作者:
    Roger Smith
Atrial Natriuretic Peptide, Cyclic GMP Analogues and Modulation of Guanylyl Cyclase do not Alter Stimulated POMC Peptide Release From Perifused Rat or Sheep Corticotrophs
心房钠尿肽、环 GMP 类似物和鸟苷酸环化酶的调节不会改变灌注的大鼠或绵羊促肾上腺皮质激素刺激的 POMC 肽释放
  • DOI:
    10.1046/j.1365-2826.1997.00665.x
  • 发表时间:
    1997
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    M. Bowman;P. Robinson;Roger Smith
  • 通讯作者:
    Roger Smith

Roger Smith的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Roger Smith', 18)}}的其他基金

Charge Quantizing CCDs Optimized for Astronomy
针对天文学优化的电荷量化 CCD
  • 批准号:
    2308380
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Prototyping a New Telescope Design for Unprecedented Survey Speed in the Infrared
原型设计新型望远镜,实现前所未有的红外观测速度
  • 批准号:
    2010041
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Modelling radiation resistant low activation High Entropy Alloys
抗辐射低活化高熵合金建模
  • 批准号:
    EP/S032819/1
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grant
India - UK Civil Nuclear Collaboration: Development of Radiation Damage Resistant High Entropy Alloys for Advanced Nuclear Systems
印度-英国民用核合作:开发用于先进核系统的抗辐射损伤高熵合金
  • 批准号:
    EP/R021724/1
  • 财政年份:
    2018
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grant
Atomistic modelling and experimental verification of vitrified matrices for waste encapsulation
废物封装用玻璃化基质的原子建模和实验验证
  • 批准号:
    EP/K007882/1
  • 财政年份:
    2013
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grant
Intrasynovial soft tissue healing - a novel translational goal for mesenchymal stem cell therapy
滑膜内软组织愈合——间充质干细胞治疗的新转化目标
  • 批准号:
    MR/J006815/1
  • 财政年份:
    2012
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grant
Perturbations of Operator Algebras and Related Topics
算子代数的扰动及相关主题
  • 批准号:
    1101403
  • 财政年份:
    2011
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Performance and Reliability of Metallic Materials for Nuclear Fission Power Generation
核裂变发电用金属材料的性能和可靠性
  • 批准号:
    EP/I003150/1
  • 财政年份:
    2010
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grant
Modelling absorption of electromagnetic radiation by carbon-based constituents of the interstellar medium
模拟星际介质碳基成分对电磁辐射的吸收
  • 批准号:
    EP/F016603/1
  • 财政年份:
    2008
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grant
Multiscale modelling and experimental investigation of radiation effects in oxides and heavy metals
氧化物和重金属辐射效应的多尺度建模和实验研究
  • 批准号:
    EP/F012047/1
  • 财政年份:
    2007
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grant

相似海外基金

Operator algebras and index theory in quantum walks and quantum information theory
量子行走和量子信息论中的算子代数和索引论
  • 批准号:
    24K06756
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Categorical Symmetries of Operator Algebras
算子代数的分类对称性
  • 批准号:
    2247202
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Quantum singularity and non-linear positive maps on operator algebras
算子代数上的量子奇点和非线性正映射
  • 批准号:
    23K03151
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Conference: Groundwork for Operator Algebras Lecture Series 2023
会议:2023 年算子代数系列讲座的基础
  • 批准号:
    2247796
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Conference: East Coast Operator Algebras Symposium 2023
会议:2023 年东海岸算子代数研讨会
  • 批准号:
    2321632
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
K-theory of Operator Algebras and Index Theory on Spaces of Singularities
算子代数的K理论与奇点空间索引论
  • 批准号:
    2247322
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Conference: Groundwork for Operator Algebras Lecture Series (GOALS) 2022
会议:算子代数基础讲座系列 (GOALS) 2022
  • 批准号:
    2154574
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Identities from Vertex Operator Algebras on the Moduli of Curves
曲线模上顶点算子代数的恒等式
  • 批准号:
    2200862
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Operator algebras and operator theory
算子代数和算子理论
  • 批准号:
    RGPIN-2018-03973
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
New horizons in operator algebras: finite-dimensional approximations and quantized function theory
算子代数的新视野:有限维近似和量化函数理论
  • 批准号:
    RGPIN-2022-03600
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了