Identities from Vertex Operator Algebras on the Moduli of Curves
曲线模上顶点算子代数的恒等式
基本信息
- 批准号:2200862
- 负责人:
- 金额:$ 23.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In algebraic geometry, one aims to understand varieties, modeled on solutions of polynomial equations. By varying the coefficients of the polynomials, one obtains families of related objects. Often the family itself can be described as a variety, and by studying it, one learns about the objects it parameterizes. Moduli spaces of curves are successful examples of this approach, giving insight into families of curves and their degenerations, and serving as a prototype for other moduli spaces. Amenable to analogies and recursive arguments, they have achieved the status of special varieties on which the theory of algebraic geometry has been tested and explored. Most importantly, moduli spaces of curves have benefited from their connections to many different areas of mathematics and mathematical physics. The grant will also provide support for mathematics enrichment activities for high-school students in Philadelphia.More specifically, vertex operator algebras (VOAs) and their representations define sheaves of coinvariants (and dual sheaves of conformal blocks) on moduli spaces of curves. Studied in special cases since the 1980's, these were recently extended to the moduli space of stable pointed curves by the PI and her coauthors, who proved that when defined by VOAs satisfying finite and semi-simplicity assumptions, sheaves of coinvariants have factorization and sewing properties, and give rise to vector bundles. This project has three major objectives: (1) to generalize these results to the context where VOAs are finite but not semi-simple, as is expected from results in log-conformal field theory; (2) to study important properties and features of such sheaves in general, including their ranks and higher Chern classes; and (3) to find geometric interpretations of vector spaces of VOA conformal blocks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在代数几何中,人们的目标是理解变化,建立在多项式方程的解的基础上。通过改变多项式的系数,可以得到相关的物体族。通常,族本身可以被描述为一个种类,通过研究它,人们可以了解它所参数化的对象。曲线的模空间是这种方法的成功例子,它提供了对曲线族及其退化的洞察,并作为其他模空间的原型。经过类比和递归论证,它们达到了特殊变种的地位,在此基础上对代数几何理论进行了测试和探索。最重要的是,曲线的模空间得益于它们与数学和数学物理的许多不同领域的联系。这笔拨款还将支持费城高中生的数学丰富活动。更具体地说,顶点算子代数(VoA)及其表示定义了曲线的模空间上的协不变量层(和共形块的对偶层)。自20世纪80年代S以来,对这些特殊情况的研究,最近由PI和她的合著者推广到稳定的点曲线的模空间,他们证明了当由Voas定义的满足有限和半单性的假设时,协不变量的层具有因式分解和缝纫性质,并产生向量丛。该项目有三个主要目标:(1)将这些结果推广到VOA是有限但不是半简单的背景下,正如对数共形场理论中的结果所期望的那样;(2)研究这类轮子的重要性质和特征,包括它们的阶和更高的Chern类;以及(3)寻找VOA共形块向量空间的几何解释。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On global generation of vector bundles on the moduli space of curves from representations of \n vertex operator algebras
- DOI:10.14231/ag-2023-010
- 发表时间:2021-07
- 期刊:
- 影响因子:1.5
- 作者:Chiara Damiolini;A. Gibney
- 通讯作者:Chiara Damiolini;A. Gibney
On an Equivalence of Divisors on $\overline {\text {M}}_{0,n}$ from Gromov-Witten Theory and Conformal Blocks
关于来自 Gromov-Witten 理论和共形块的 $overline { ext {M}}_{0,n}$ 上的除数等价
- DOI:10.1007/s00031-022-09752-6
- 发表时间:2022
- 期刊:
- 影响因子:0.7
- 作者:Chen, L.;Gibney, A.;Heller, L.;Kalashnikov, E.;Larson, H.;Xu, W.
- 通讯作者:Xu, W.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Angela Gibney其他文献
Scaling of conformal blocks and generalized theta functions over $$\overline{\mathcal {M}}_{g,n}$$
- DOI:
10.1007/s00209-016-1682-1 - 发表时间:
2016-05-10 - 期刊:
- 影响因子:1.000
- 作者:
Prakash Belkale;Angela Gibney;Anna Kazanova - 通讯作者:
Anna Kazanova
On extensions of the Torelli map
- DOI:
10.4171/119 - 发表时间:
2012-05 - 期刊:
- 影响因子:0
- 作者:
Angela Gibney - 通讯作者:
Angela Gibney
Conformal Blocks on Smoothings via Mode Transition Algebras
- DOI:
10.1007/s00220-025-05237-1 - 发表时间:
2025-05-07 - 期刊:
- 影响因子:2.600
- 作者:
Chiara Damiolini;Angela Gibney;Daniel Krashen - 通讯作者:
Daniel Krashen
Angela Gibney的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Angela Gibney', 18)}}的其他基金
Generalized Verlinde Bundles and Moduli Spaces of Curves
广义 Verlinde 丛和曲线模空间
- 批准号:
2202068 - 财政年份:2021
- 资助金额:
$ 23.49万 - 项目类别:
Continuing Grant
Collaborative Proposal: AGNES: Algebraic Geometry NorthEastern Series
合作提案:AGNES:代数几何东北系列
- 批准号:
1937370 - 财政年份:2019
- 资助金额:
$ 23.49万 - 项目类别:
Continuing Grant
Generalized Verlinde Bundles and Moduli Spaces of Curves
广义 Verlinde 丛和曲线模空间
- 批准号:
1902237 - 财政年份:2019
- 资助金额:
$ 23.49万 - 项目类别:
Continuing Grant
Vector Bundles of Conformal Blocks on Moduli Spaces
模空间上共角块的向量丛
- 批准号:
1820718 - 财政年份:2017
- 资助金额:
$ 23.49万 - 项目类别:
Standard Grant
Vector Bundles of Conformal Blocks on Moduli Spaces
模空间上共角块的向量丛
- 批准号:
1601909 - 财政年份:2016
- 资助金额:
$ 23.49万 - 项目类别:
Standard Grant
The Boot Camp for the 2015 Algebraic Geometry Summer Research Institute
2015年代数几何暑期研究院集训营
- 批准号:
1500652 - 财政年份:2015
- 资助金额:
$ 23.49万 - 项目类别:
Standard Grant
Conformal blocks and positive cycles on the moduli space of curves
曲线模空间上的共形块和正循环
- 批准号:
1201268 - 财政年份:2012
- 资助金额:
$ 23.49万 - 项目类别:
Standard Grant
Georgia Algebraic Geometry Symposium
乔治亚代数几何研讨会
- 批准号:
1139200 - 财政年份:2011
- 资助金额:
$ 23.49万 - 项目类别:
Continuing Grant
COMPACT MODULI AND VECTOR BUNDLES CONFERENCE
紧凑模和向量束会议
- 批准号:
1028536 - 财政年份:2010
- 资助金额:
$ 23.49万 - 项目类别:
Standard Grant
The Birational Geometry of Moduli Spaces of Curves
曲线模空间的双有理几何
- 批准号:
0509319 - 财政年份:2004
- 资助金额:
$ 23.49万 - 项目类别:
Standard Grant
相似海外基金
Modular linear differential equations and vertex operator algebras
模线性微分方程和顶点算子代数
- 批准号:
22K03249 - 财政年份:2022
- 资助金额:
$ 23.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Higher Quantum Airy Structures from Vertex Operator Algebras
顶点算子代数的更高量子艾里结构
- 批准号:
569537-2022 - 财政年份:2022
- 资助金额:
$ 23.49万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Research on vertex operator algebras by using Conway groups
利用康威群研究顶点算子代数
- 批准号:
21K03195 - 财政年份:2021
- 资助金额:
$ 23.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on uniform construction and automorphism groups of holomorphic vertex operator algebras of central charge 24
中心电荷全纯顶点算子代数的一致构造和自同构群研究 24
- 批准号:
20K03505 - 财政年份:2020
- 资助金额:
$ 23.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Symmetric functions and vertex operator algebras
对称函数和顶点算子代数
- 批准号:
2279467 - 财政年份:2019
- 资助金额:
$ 23.49万 - 项目类别:
Studentship
Vertex Operator Algebras, Number Theory, and Related Topics
顶点算子代数、数论及相关主题
- 批准号:
1802478 - 财政年份:2018
- 资助金额:
$ 23.49万 - 项目类别:
Standard Grant
Research on uniqueness of holomorphic vertex operator algebras of central charge 24 by using reverse orbifold construction
利用逆轨道折叠结构研究中心电荷24全纯顶点算子代数的唯一性
- 批准号:
17K05154 - 财政年份:2017
- 资助金额:
$ 23.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Vertex operator algebras and modular differential equations
顶点算子代数和模微分方程
- 批准号:
17K05171 - 财政年份:2017
- 资助金额:
$ 23.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
EAPSI: Modular Vertex Operator Algebras Associated with the Virasoro Algebra
EAPSI:与 Virasoro 代数相关的模顶点算子代数
- 批准号:
1713945 - 财政年份:2017
- 资助金额:
$ 23.49万 - 项目类别:
Fellowship Award
Research on structural symmetries of vertex operator algebras
顶点算子代数的结构对称性研究
- 批准号:
16K05073 - 财政年份:2016
- 资助金额:
$ 23.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)