Stringy Mathematics
弦数学
基本信息
- 批准号:0401814
- 负责人:
- 金额:$ 25.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-08-01 至 2007-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the past few years, there has been significant interplay between string theory and mathematics. For example, advances in supersymmetric field theory have shed light on four manifold invariants, while advances in algebraic geometry have clarified the origins of mirror symmetry. The aim of this project is to further strengthen this interplay by research focused on three areas of interest to both mathematicians and physicists. The broader impact of this project centers on improved interdisciplinary ties fostered through lectures at schools and workshops, and through direct collaboration. The first research goal is to develop a recently discovered analogue of mirror symmetry for the heterotic string. Conventional mirror symmetry applies to theories with (2; 2) super-symmetry. However, these compactifications constitute a special subclass of more general heterotic string compactifications with only (0; 2) supersymmetry. Many of the interesting structures of (2; 2) theories, like quantum cohomology (or chiral) rings, generalize to this richer setting. Using the dual description, the chiral ring can be determined exactly in many examples, leading to predictions about heterotic string instanton corrections. The study of (0; 2) duality is a topic in its infancy, and there are many directions to explore: for example, S-duality maps heterotic world-sheet instantons into D-instantons of type I open string theory. This suggests a relation between open and closed string instantons, which is likely to be fascinating both to physicists and to geometers. The second area of focus involves compactifications with flux. In the presense of flux, a string target space need not be Ricci-flat. Compact examples of this kind involving just NS-NS fluxes have been found in recent years. These are compactifications with torsion. It is clear that there should be dual descriptions for vacua of this kind (in the sense of mirror symmetry), but there is little currently known about these duals. Since generic string compactifications involve fluxes, constructing dual descriptions for these cases is likely to both enhance our understanding of the string moduli space, and lead to novel questions in mathematics. The third direction revolves around a relation between matrix integrals and modular forms. The twisted partition function for type IIB D-instantons in ten dimensions is computed by evaluating a complicated matrix integral. Yet these matrix integrals are encoded in a particular modular form, which appears in the effective action for the type IIB string. This modular form is completely determined by supersymmetry. The connection between the U-duality group, SL(2;Z), and the matrix integrals is intriguing and puzzling: why is it true? Does it generalize to lower dimensions where the U-duality group is larger? Does it extend to other solitons like monopoles? There are tantalizing hints that the answer to the last two questions is affirmative, but much remains to be understood.
在过去的几年里,弦理论和数学之间有着重要的相互作用。例如,超对称场论的进展揭示了四个流形不变量,而代数几何的进展澄清了镜像对称的起源。该项目的目的是通过研究数学家和物理学家感兴趣的三个领域来进一步加强这种相互作用。该项目的更广泛影响集中在通过学校和研讨会的讲座以及通过直接合作促进的跨学科联系上。第一个研究目标是开发一个最近发现的镜像对称的杂种优势字符串的模拟。传统的镜像对称适用于具有(2; 2)超对称性的理论。然而,这些紧化构成了一个特殊的子类更一般的杂合弦紧化只有(0; 2)超对称。(2; 2)理论的许多有趣的结构,如量子上同调(或手征)环,都可以推广到这个更丰富的环境。使用对偶描述,手征环可以在许多例子中被精确地确定,从而导致关于杂合弦瞬子修正的预测。研究了(0; 2)对偶性是一个处于萌芽阶段的话题,有许多方向可以探索:例如,S-对偶性将杂化世界片瞬子映射到I型开弦理论的D-瞬子。这表明了开弦瞬子和闭弦瞬子之间的关系,这可能会让物理学家和几何学家都感兴趣。第二个重点领域涉及通量的紧化。在通量存在的情况下,弦目标空间不必是Ricci平坦的。近年来,已经发现了这种仅涉及NS-NS通量的紧凑例子。这些是有挠紧化。很明显,这类真空应该有双重的描述(在镜像对称的意义上),但目前对这些双重的描述知之甚少。由于一般弦紧化涉及通量,因此为这些情况构建对偶描述可能既能增强我们对弦模空间的理解,又能引发数学中的新问题。第三个方向围绕矩阵积分和模形式之间的关系。通过计算一个复杂的矩阵积分,计算了10维IIB型D-瞬子的扭曲配分函数。然而,这些矩阵积分以特定的模形式编码,这出现在IIB型弦的有效作用量中。这种模形式完全由超对称性决定。U-对偶群SL(2;Z)和矩阵积分之间的联系是有趣和令人困惑的:为什么它是真的?它是否推广到U-对偶群较大的低维情况?它会延伸到其他的孤子,比如单极子吗?有一些诱人的迹象表明,最后两个问题的答案是肯定的,但仍有许多问题有待理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Savdeep Sethi其他文献
Savdeep Sethi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Savdeep Sethi', 18)}}的其他基金
Exploring the Topography of String Theory and Quantum Field Theory
探索弦理论和量子场论的拓扑
- 批准号:
2014195 - 财政年份:2020
- 资助金额:
$ 25.4万 - 项目类别:
Standard Grant
Exploring Structure and Symmetry in String Theory and Field Theory
探索弦理论和场论中的结构和对称性
- 批准号:
1720480 - 财政年份:2017
- 资助金额:
$ 25.4万 - 项目类别:
Continuing Grant
Static and Dynamical Aspects of String Theory
弦理论的静态和动态方面
- 批准号:
1316960 - 财政年份:2013
- 资助金额:
$ 25.4万 - 项目类别:
Continuing Grant
CAREER: Exploring the Structure of M Theory
职业:探索 M 理论的结构
- 批准号:
0094328 - 财政年份:2001
- 资助金额:
$ 25.4万 - 项目类别:
Continuing Grant
相似国自然基金
普林斯顿应用数学指南(The Princeton Companion to Applied Mathematics )的翻译与出版
- 批准号:12226506
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:数学天元基金项目
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
数学之源书(Source book in mathematics)的翻译与出版
- 批准号:11826405
- 批准年份:2018
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
怀尔德“Mathematics as a cultural system”翻译研究
- 批准号:11726404
- 批准年份:2017
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
Frontiers of Mathematics in China
- 批准号:11024802
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:专项基金项目
相似海外基金
Mathematics to underpin and drive novel inertial microfluidic technologies
数学支撑和驱动新型惯性微流体技术
- 批准号:
DP240101089 - 财政年份:2024
- 资助金额:
$ 25.4万 - 项目类别:
Discovery Projects
REU Site: Appalachian Mathematics and Physics Site
REU 站点:阿巴拉契亚数学和物理站点
- 批准号:
2349289 - 财政年份:2024
- 资助金额:
$ 25.4万 - 项目类别:
Standard Grant
REU Site: Research Experiences for Undergraduates in Algebra and Discrete Mathematics at Auburn University
REU 网站:奥本大学代数和离散数学本科生的研究经验
- 批准号:
2349684 - 财政年份:2024
- 资助金额:
$ 25.4万 - 项目类别:
Continuing Grant
Conference: The eleventh annual graduate student mini-conference in computational mathematics
会议:第十一届计算数学研究生小型会议
- 批准号:
2349950 - 财政年份:2024
- 资助金额:
$ 25.4万 - 项目类别:
Standard Grant
Conference: TROY MathFest Undergraduate Mathematics Conference series 2024-2026
会议:TROY MathFest 本科生数学会议系列 2024-2026
- 批准号:
2346627 - 财政年份:2024
- 资助金额:
$ 25.4万 - 项目类别:
Standard Grant
REU Site: Visiting and Early Research Scholars' Experiences in Mathematics (VERSEIM-REU)
REU 网站:访问学者和早期研究学者的数学经历 (VERSEIM-REU)
- 批准号:
2349058 - 财政年份:2024
- 资助金额:
$ 25.4万 - 项目类别:
Standard Grant
REU Site: Applied Mathematics in Real World Problems
REU 网站:现实世界问题中的应用数学
- 批准号:
2349382 - 财政年份:2024
- 资助金额:
$ 25.4万 - 项目类别:
Continuing Grant
Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
- 批准号:
2322614 - 财政年份:2024
- 资助金额:
$ 25.4万 - 项目类别:
Standard Grant
Sustained Cascade Mentoring in Mathematics
数学的持续级联辅导
- 批准号:
2325822 - 财政年份:2024
- 资助金额:
$ 25.4万 - 项目类别:
Standard Grant
Strengthening the Mathematics and Science Teacher Pathways in the Post-Pandemic Environment
加强大流行后环境中的数学和科学教师的途径
- 批准号:
2344918 - 财政年份:2024
- 资助金额:
$ 25.4万 - 项目类别:
Continuing Grant