Static and Dynamical Aspects of String Theory

弦理论的静态和动态方面

基本信息

  • 批准号:
    1316960
  • 负责人:
  • 金额:
    $ 22.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-01 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

This award funds the research activities of Professor Savdeep Sethi at the University of Chicago. The origins of space and time are one of the enduring mysteries of nature. Did space and time emerge in some kind of Big Bang? Will the universe end in a Big Crunch? Can we sensibly describe these singular highly quantum states of nature? In order to answer such basic questions about the nature of space and time, we need a quantum theory of gravity. String theory remains the best candidate for such a theory. In his research, Professor Sethi aims to explore static and dynamical aspects of string theory and quantum field theory. The static aspects include new ways of curling up the extra dimensions of string theory to arrive at a four-dimensional universe. These new types of compactification are closely tied to the dynamics of chiral gauge theory in two dimensions. The dynamical aspects include the study of stringy domain walls. These walls are bubbles of inflating space-time, quite similar to the conventional branes of string theory, which offer the possibility of a holographic definition of quantum gravity in an accelerating universe. This project is also expected to have significant broader impacts. Professor Sethi will involve graduate students and post-doctoral fellows in his research, thereby providing mentoring to junior physicists studying string theory and quantum field theory. He also intends to interact with high-school students and undergraduates through continued participation in the Chicago REU program and the Space Explorers inner-city K-12 enrichment program. The final aspect of the broader impacts comes from improved interdisciplinary ties with both cosmologists and mathematicians through lectures at schools and workshops, through direct collaboration, and by organizing workshops at the interface between these disciplines.
该奖项资助芝加哥大学萨夫迪普·塞蒂教授的研究活动。空间和时间的起源是自然界经久不衰的谜团之一。空间和时间是在某种大爆炸中出现的吗?宇宙会在一道大裂缝中终结吗?我们能理智地描述自然界中这些奇异的高度量子态吗?为了回答这些关于空间和时间性质的基本问题,我们需要一个量子引力理论。弦理论仍然是这种理论的最佳候选者。在他的研究中,塞西教授的目标是探索弦理论和量子场论的静态和动态方面。静态方面包括卷曲弦理论额外维度以达到四维宇宙的新方法。这些新类型的紧凑化与二维手征规范理论的动力学密切相关。动力学方面包括对弦磁区壁的研究。这些墙是膨胀的时空气泡,非常类似于传统的弦理论膜,它提供了在加速的宇宙中对量子引力进行全息定义的可能性。预计该项目还将产生更广泛的重大影响。塞西教授将邀请研究生和博士后研究员参与他的研究,从而为学习弦论和量子场论的初级物理学家提供指导。他还打算通过继续参与芝加哥REU计划和太空探索者市内K-12增富计划与高中生和本科生进行互动。更广泛影响的最后一个方面是,通过在学校和讲习班上的讲座、通过直接合作以及在这些学科之间举办讲习班,改善了与宇宙学家和数学家的跨学科联系。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Savdeep Sethi其他文献

Savdeep Sethi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Savdeep Sethi', 18)}}的其他基金

Exploring the Topography of String Theory and Quantum Field Theory
探索弦理论和量子场论的拓扑
  • 批准号:
    2014195
  • 财政年份:
    2020
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Exploring Structure and Symmetry in String Theory and Field Theory
探索弦理论和场论中的结构和对称性
  • 批准号:
    1720480
  • 财政年份:
    2017
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
Time, Fluxes and String Theory
时间、通量和弦理论
  • 批准号:
    0758029
  • 财政年份:
    2008
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
Stringy Mathematics
弦数学
  • 批准号:
    0401814
  • 财政年份:
    2004
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
CAREER: Exploring the Structure of M Theory
职业:探索 M 理论的结构
  • 批准号:
    0094328
  • 财政年份:
    2001
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant

相似海外基金

Dynamical and descriptive aspects of groups and their actions
群体及其行为的动态和描述性方面
  • 批准号:
    2246684
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Dynamical Aspects of Topological Phases
拓扑相的动力学方面
  • 批准号:
    2606484
  • 财政年份:
    2021
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Studentship
Statistical and Number-Theoretical Aspects of Dynamical Systems
动力系统的统计和数论方面
  • 批准号:
    RGPIN-2016-03901
  • 财政年份:
    2020
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical and Number-Theoretical Aspects of Dynamical Systems
动力系统的统计和数论方面
  • 批准号:
    RGPIN-2016-03901
  • 财政年份:
    2019
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Discovery Grants Program - Individual
Neural computation principle based on "stable chaos"; Toward understanding the dynamical aspects of visual attention
基于“稳定混沌”的神经计算原理;
  • 批准号:
    19H04183
  • 财政年份:
    2019
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Statistical and Number-Theoretical Aspects of Dynamical Systems
动力系统的统计和数论方面
  • 批准号:
    RGPIN-2016-03901
  • 财政年份:
    2018
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Discovery Grants Program - Individual
Topological, geometric and probabilistic aspects of dynamical systems (renewal proposal)
动力系统的拓扑、几何和概率方面(更新提案)
  • 批准号:
    407739711
  • 财政年份:
    2018
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Heisenberg Grants
Dynamical Aspects of Ramsey Theory
拉姆齐理论的动力学方面
  • 批准号:
    1700147
  • 财政年份:
    2017
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Statistical and Number-Theoretical Aspects of Dynamical Systems
动力系统的统计和数论方面
  • 批准号:
    RGPIN-2016-03901
  • 财政年份:
    2017
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical and Number-Theoretical Aspects of Dynamical Systems
动力系统的统计和数论方面
  • 批准号:
    RGPIN-2016-03901
  • 财政年份:
    2016
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了