RUI: Combinatorial Set Theory
RUI:组合集合论
基本信息
- 批准号:0401893
- 负责人:
- 金额:$ 7.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-08-01 至 2008-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS-0401893Principal Investigator: Justin T. MooreThe proposed research concerns applying new techniques in settheory and infinite combinatorics to basis problems in topology,graph theory, and order theory. In each case, the goal is toprove a classification theorem for the uncountable objects in acertain category. Three such categories are topological spaces,bipartite graphs, and linear orders. The goal is to use forcingaxioms to prove that the category has a finite basis of classicalexamples. The techniques employed in analyzing such problems areoften Ramsey theoretic and frequently draw upon results andmotivation which arise in analyzing Cantor's continuum problemand Suslin's classification problem for the real line. Theproposed research seeks to expand our understanding of forcingaxioms and their impact upon basis problems and the continuumproblem. The PI has already proved that the Proper Forcing Axiomimplies that the uncountable linear orders have a five elementbasis, answering one of the central problems of the proposal.The proof involved new techniques in infinite combinatorics whichare likely relevant to completing the rest of the proposal. Atthe crux is the PI's notion of set mapping reflection which wasformulated in relation to his results on the Proper Forcing Axiomand the size of the continuum. Conspicuous in the solution isthe need for a strong axiom of infinity to obtain the consistencyof a five element basis. This was quite unexpected and may serveboth to explain past difficulties and fuel future research on therelationship between very large sets and combinatorics associatedwith the smallest uncountable cardinal.The proposed research represents an analysis of fundamentalmathematical objects - graphs, orders, and topologies - using ageneralized version of the probabilistic method which Paul Erdospioneered in his study of networks, packings, prime numbers, andcircuit complexity. The apothegm of the probabilistic method is:"If an object occurs with positive probability, it exists." Forfinite probability spaces, this is a fact. For infinite spacesand their generalizations - known as forcing notions - itrequires additional axiomatic assumptions - known as forcingaxioms. The PI has recently shown, for instance, under suchassumptions that any linear order which cannot be represented asa collection of rational numbers must contain one of fivecritical orders. While at the present this would seem torepresent a theoretical accomplishment with little practicalsignificance, the style of argument may inspire real worldapplications in the future. A recent example of such a successin set theory is Laver's algorithm for comparing braids. Animportant question which arises in a number of areas ofmathematics and science - from particle physics to genetics - iswhen two braids can be made to look the same without cutting orbreaking the strands. Laver used ideas from the theory of largeinfinite sets to devise a fast algorithm for comparing braids.The previous algorithm was exponentially slow. Currentalgorithms based on Laver's idea run in quadratic time (fast).Hence the study of infinite sets can provide practicalapplications to much more down to earth objects. The proposedresearch may some day have applications in the traditionalfinitary probabilistic method or less foreseeable impact as withwith Laver's work.
摘要奖:DMS-0401893主要研究者:Justin T. MooreThe拟议的研究涉及应用新技术在集合论和无限组合学的基础问题在拓扑学,图论和秩序理论。 在每一种情况下,目标是证明一个分类定理的不可数对象在某个类别。 三个这样的范畴是拓扑空间,二分图,和线性序。 我们的目标是使用强迫公理来证明范畴具有经典例子的有限基。在分析这些问题所采用的技术往往是拉姆齐理论和经常借鉴的结果和动机,出现在分析康托的连续问题和Suslin的分类问题的真实的线。 拟议的研究旨在扩大我们的理解力公理和它们的影响基础问题和连续性问题。 PI已经证明了适当的强制公理意味着不可数的线性顺序有一个五元素的基础,回答了该提案的中心问题之一。证明涉及无限组合学的新技术,这些技术可能与完成提案的其余部分有关。 在关键是PI的概念集映射反射wasformulated关系到他的结果正确的强迫公理和规模的连续。 在解决方案中显而易见的是,需要一个强无穷公理来获得五元素基的一致性。 这是完全出乎意料的,可能有助于解释过去的困难,并为未来关于非常大的集合和与最小的不可数基数相关的组合学之间的关系的研究提供燃料。拟议的研究代表了对基本数学对象--图、序和拓扑--的分析,使用的是保罗·埃尔多安在他的网络、包装、素数研究中提出的概率方法的广义版本,和电路复杂度。 概率方法的格言是:“如果一个对象以正概率出现,它就存在。“对于有限的概率空间,这是一个事实。 对于无限空间和它们的推广--被称为强迫概念--它需要额外的公理化假设--被称为强迫公理。 例如,PI最近证明,在这样的假设下,任何不能阿萨有理数集合表示的线性序必须包含五个临界序之一。 虽然在目前看来,这似乎代表了一个理论上的成就,没有什么实际意义,但这种论证风格可能会激发未来真实的世界应用。 最近的一个成功的集合论的例子是拉弗的比较辫子的算法。 从粒子物理学到遗传学,数学和科学领域的一个重要问题是,什么时候可以让两条辫子看起来一样,而不需要切断或折断。 拉弗利用大无限集理论的思想设计了一种比较辫子的快速算法,以前的算法是指数级的慢。 基于Laver思想的电流出租是以二次时间(快)运行的,因此对无限集合的研究可以为更多的实际对象提供实际应用。 拟议中的研究可能有一天在传统的有限概率方法中得到应用,或者像Laver的工作那样产生较少的可预见的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Justin Moore其他文献
Predictors of Recurrent Venous Thrombosis After Cerebral Venous Thrombosis: Analysis of the ACTION-CVT Study.
脑静脉血栓形成后复发性静脉血栓形成的预测因素:ACTION-CVT 研究分析。
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:9.9
- 作者:
Liqi Shu;Ekaterina Bakradze;S. Omran;James A. Giles;Jordan Y. Amar;N. Henninger;Marwa Elnazeir;A. Liberman;Khadean Moncrieffe;Jenny Rotblat;Richa Sharma;Y. Cheng;Adeel S. Zubair;A. Simpkins;Grace T Li;J. Kung;D. Perez;M. Heldner;A. Scutelnic;Rascha von Martial;B. Siepen;A. Rothstein;Ossama Khazaal;David Do;S. Al kasab;Line Abdul Rahman;Eva A. Mistry;Deborah Kerrigan;Hayden Lafever;Thanh N. Nguyen;P. Klein;Hugo J. Aparicio;J. Frontera;L. Kuohn;Shashank Agarwal;C. Stretz;Narendra S Kala;Sleiman ElJamal;Allison Chang;Shawna Cutting;Fransisca Indraswari;A. D. de Havenon;Varsha Muddasani;Teddy Y. Wu;D. Wilson;A. Nouh;Daniyal Asad;A. Qureshi;Justin Moore;P. Khatri;Yasmin N. Aziz;Bryce Casteigne;Muhib Khan;Yao Cheng;Brian Mac Grory;Martin Weiss;D. Ryan;M. Vedovati;M. Paciaroni;J. Siegler;Scott Kamen;Siyuan Yu;C. L. Guerrero;Eugenie Atallah;G. D. De Marchis;A. Brehm;Tolga D. Dittrich;M. Psychogios;Ronald Alvarado;T. Kass;S. Prabhakaran;T. Honda;D. Liebeskind;K. Furie;S. Yaghi - 通讯作者:
S. Yaghi
Updates on neonatal cell and novel therapeutics: Proceedings of the Second Neonatal Cell Therapies Symposium (2024)
新生儿细胞与新型疗法的最新进展:第二届新生儿细胞疗法研讨会会议录(2024 年)
- DOI:
10.1038/s41390-025-03856-x - 发表时间:
2025-01-15 - 期刊:
- 影响因子:3.100
- 作者:
Madison C. B. Paton;Manon Benders;Remy Blatch-Williams;Elizabeth Dallimore;Adam Edwards;Ngaire Elwood;Kylie Facer;Megan Finch-Edmondson;Natasha Garrity;Adrienne Gordon;Rod W. Hunt;Graham Jenkin;Courtney A. McDonald;Justin Moore;Marcel F. Nold;Iona Novak;Himanshu Popat;Carlos Salomon;Yoshiaki Sato;Mary Tolcos;Julie A. Wixey;Tamara Yawno;Lindsay Zhou;Atul Malhotra - 通讯作者:
Atul Malhotra
INFORMING RESEARCH TO PRACTICE TRANSLATION OF TELEMEDICINE MANAGEMENT OF HYPERTENSION: A SYSTEMATIC REVIEW AND META-ANALYSIS OF CLINICAL TRIALS
- DOI:
10.1016/s0735-1097(23)02198-8 - 发表时间:
2023-03-07 - 期刊:
- 影响因子:
- 作者:
Sameer Acharya;Gagan Neupane;Austin Seals;Sharan Sharma;Yhenneko Taylor;Deepak Palakshappa;Jeff D. Williamson;Hayden Bosworth;Justin Moore;Yashashwi Pokharel - 通讯作者:
Yashashwi Pokharel
IDENTIFYING IMPLEMENTATION TACTICS USED IN CLINICAL TRIALS OF TELEMEDICINE MANAGEMENT OF HYPERTENSION TO ENHANCE TRANSLATION INTO PRACTICE
- DOI:
10.1016/s0735-1097(23)02325-2 - 发表时间:
2023-03-07 - 期刊:
- 影响因子:
- 作者:
Sean K. Wang;Vidhya Suresh;Adrianna Elashker;Rahma Ajja;Austin Seals;Sameer Acharya;Jeff D. Williamson;Justin Moore;Hayden Bosworth;Yashashwi Pokharel - 通讯作者:
Yashashwi Pokharel
University of California at Berkeley Berkeley, CA, USA March 24–27, 2011
加州大学伯克利分校 美国加利福尼亚州伯克利 2011 年 3 月 24-27 日
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
G. A. Antonelli;L. Bienvenu;L. Dries;Deirdre Haskell;Justin Moore;Christian Rosendal Uic;Neil Thapen;S. Thomas - 通讯作者:
S. Thomas
Justin Moore的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Justin Moore', 18)}}的其他基金
Descriptive Set Theory And Polish Groups at the Bernoulli Center
伯努利中心的描述性集合论和波兰群
- 批准号:
1800263 - 财政年份:2017
- 资助金额:
$ 7.2万 - 项目类别:
Standard Grant
Fields Institute Thematic Program: Forcing and its Applications
菲尔兹研究所主题项目:力及其应用
- 批准号:
1162052 - 财政年份:2012
- 资助金额:
$ 7.2万 - 项目类别:
Standard Grant
相似海外基金
NSF-BSF Combinatorial Set Theory and PCF
NSF-BSF 组合集合论和 PCF
- 批准号:
2400200 - 财政年份:2024
- 资助金额:
$ 7.2万 - 项目类别:
Standard Grant
Combinatorial Set Theory, Forcing, and Large Cardinals
组合集合论、强迫和大基数
- 批准号:
2308248 - 财政年份:2023
- 资助金额:
$ 7.2万 - 项目类别:
Continuing Grant
Combinatorial set theory and measurable combinatorics
组合集合论和可测组合学
- 批准号:
RGPIN-2021-03549 - 财政年份:2022
- 资助金额:
$ 7.2万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial set theory and measurable combinatorics
组合集合论和可测组合学
- 批准号:
DGECR-2021-00401 - 财政年份:2021
- 资助金额:
$ 7.2万 - 项目类别:
Discovery Launch Supplement
Combinatorial set theory and measurable combinatorics
组合集合论和可测组合学
- 批准号:
RGPIN-2021-03549 - 财政年份:2021
- 资助金额:
$ 7.2万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial Set Theory, Forcing, and Large Cardinals
组合集合论、强迫和大基数
- 批准号:
1954117 - 财政年份:2020
- 资助金额:
$ 7.2万 - 项目类别:
Continuing Grant
Combinatorial Set Theory, Model Theory of Abstract Elementary Classes, and Borel Combinatorics
组合集合论、抽象初等类模型论和 Borel 组合学
- 批准号:
1700425 - 财政年份:2017
- 资助金额:
$ 7.2万 - 项目类别:
Continuing Grant
Combinatorial Set Theory and Forcing
组合集合论和强迫
- 批准号:
466187-2014 - 财政年份:2014
- 资助金额:
$ 7.2万 - 项目类别:
University Undergraduate Student Research Awards