Summer Topology Conferences 2022
2022 年夏季拓扑会议
基本信息
- 批准号:2202452
- 负责人:
- 金额:$ 2.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This grant supports US-based participants, especially junior researchers and graduate students, who attend either the 36th Summer Topology Conference (SUMTOPO) meeting hosted at the University of Vienna, Austria, from July 18-22, 2022, or the Prague Symposium on General Topology and its Relations to Modern Analysis and Algebra (TOPOSYM) held July 25-29, 2022, in Prague, Czech Republic. Because of their close geographic and temporal proximity and disjoint lists of plenary speakers, these meetings provide a special opportunity for US researchers to participate in one or both and to meet colleagues in Europe, share their research, start new collaborations, and continue old ones. The primary goal of these conferences is to aid in the dissemination of knowledge of experts in the field of topology. In addition to this, collecting such a group of experts at a meeting will inevitably lead to new collaborations and the furthering of basic research in the field of topology.SUMTOPO is an annual conference in its 36th installment, which has been hosted both in the US and abroad in recent years, including in South Africa, Ireland, and England. The TOPOSYM conference is held in Prague, Czech Republic in a five-year cycle since 1961. Both meetings have long served as a geographic and intellectual meeting point, and both have a large attendance from both North America (the US in particular) and from Europe. Both conferences cover a broad range of topics on the more analytical side of topology: general and set-theoretic topology, descriptive set theory, continuum theory, topological dynamics, topology in functional analysis and algebra, and categorical topology. They will feature plenary lectures by many leaders in these fields.More information can be found on the webpages: SUMTOPO: https://www.univie.ac.at/projektservice-mathematik/e/index.php?event=stc22 TOPOSYM: http://www.toposym.cz/This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该补助金支持美国的参与者,特别是初级研究人员和研究生,他们参加在奥地利维也纳大学举办的第36届夏季拓扑会议(SUMTOPO)会议,从2022年7月18日至22日,或布拉格一般拓扑及其与现代分析和代数的关系研讨会(TOPOSYM)于2022年7月25日至29日在捷克共和国布拉格举行。由于其地理位置和时间上的接近以及全体发言人的不相交名单,这些会议为美国研究人员提供了一个特殊的机会,可以参加其中一个或两个会议,并与欧洲的同事会面,分享他们的研究,开始新的合作,并继续旧的合作。这些会议的主要目标是帮助传播拓扑学领域的专家知识。除此之外,在一次会议上聚集这样一批专家将不可避免地导致新的合作和拓扑学领域基础研究的进一步发展。SUMTOPO是第36届年度会议,近年来在美国和国外举办,包括南非,爱尔兰和英格兰。TOPOSYM会议自1961年以来每五年在捷克共和国的布拉格举行一次。这两个会议长期以来一直是地理和知识的交汇点,都有大量来自北美(特别是美国)和欧洲的与会者。这两个会议涵盖了广泛的主题更分析方面的拓扑:一般和集理论拓扑,描述集理论,连续统理论,拓扑动力学,拓扑在功能分析和代数,和分类拓扑。这些领域的许多领导人将在全体会议上发表演讲。更多信息可以在以下网页上找到:SUMTOPO:https://www.univie.ac.at/projektservice-mathematik/e/index.php?事件=stc22 TOPOSYM:http://www.toposym.cz/This奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Justin Moore其他文献
Predictors of Recurrent Venous Thrombosis After Cerebral Venous Thrombosis: Analysis of the ACTION-CVT Study.
脑静脉血栓形成后复发性静脉血栓形成的预测因素:ACTION-CVT 研究分析。
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:9.9
- 作者:
Liqi Shu;Ekaterina Bakradze;S. Omran;James A. Giles;Jordan Y. Amar;N. Henninger;Marwa Elnazeir;A. Liberman;Khadean Moncrieffe;Jenny Rotblat;Richa Sharma;Y. Cheng;Adeel S. Zubair;A. Simpkins;Grace T Li;J. Kung;D. Perez;M. Heldner;A. Scutelnic;Rascha von Martial;B. Siepen;A. Rothstein;Ossama Khazaal;David Do;S. Al kasab;Line Abdul Rahman;Eva A. Mistry;Deborah Kerrigan;Hayden Lafever;Thanh N. Nguyen;P. Klein;Hugo J. Aparicio;J. Frontera;L. Kuohn;Shashank Agarwal;C. Stretz;Narendra S Kala;Sleiman ElJamal;Allison Chang;Shawna Cutting;Fransisca Indraswari;A. D. de Havenon;Varsha Muddasani;Teddy Y. Wu;D. Wilson;A. Nouh;Daniyal Asad;A. Qureshi;Justin Moore;P. Khatri;Yasmin N. Aziz;Bryce Casteigne;Muhib Khan;Yao Cheng;Brian Mac Grory;Martin Weiss;D. Ryan;M. Vedovati;M. Paciaroni;J. Siegler;Scott Kamen;Siyuan Yu;C. L. Guerrero;Eugenie Atallah;G. D. De Marchis;A. Brehm;Tolga D. Dittrich;M. Psychogios;Ronald Alvarado;T. Kass;S. Prabhakaran;T. Honda;D. Liebeskind;K. Furie;S. Yaghi - 通讯作者:
S. Yaghi
Updates on neonatal cell and novel therapeutics: Proceedings of the Second Neonatal Cell Therapies Symposium (2024)
新生儿细胞与新型疗法的最新进展:第二届新生儿细胞疗法研讨会会议录(2024 年)
- DOI:
10.1038/s41390-025-03856-x - 发表时间:
2025-01-15 - 期刊:
- 影响因子:3.100
- 作者:
Madison C. B. Paton;Manon Benders;Remy Blatch-Williams;Elizabeth Dallimore;Adam Edwards;Ngaire Elwood;Kylie Facer;Megan Finch-Edmondson;Natasha Garrity;Adrienne Gordon;Rod W. Hunt;Graham Jenkin;Courtney A. McDonald;Justin Moore;Marcel F. Nold;Iona Novak;Himanshu Popat;Carlos Salomon;Yoshiaki Sato;Mary Tolcos;Julie A. Wixey;Tamara Yawno;Lindsay Zhou;Atul Malhotra - 通讯作者:
Atul Malhotra
INFORMING RESEARCH TO PRACTICE TRANSLATION OF TELEMEDICINE MANAGEMENT OF HYPERTENSION: A SYSTEMATIC REVIEW AND META-ANALYSIS OF CLINICAL TRIALS
- DOI:
10.1016/s0735-1097(23)02198-8 - 发表时间:
2023-03-07 - 期刊:
- 影响因子:
- 作者:
Sameer Acharya;Gagan Neupane;Austin Seals;Sharan Sharma;Yhenneko Taylor;Deepak Palakshappa;Jeff D. Williamson;Hayden Bosworth;Justin Moore;Yashashwi Pokharel - 通讯作者:
Yashashwi Pokharel
IDENTIFYING IMPLEMENTATION TACTICS USED IN CLINICAL TRIALS OF TELEMEDICINE MANAGEMENT OF HYPERTENSION TO ENHANCE TRANSLATION INTO PRACTICE
- DOI:
10.1016/s0735-1097(23)02325-2 - 发表时间:
2023-03-07 - 期刊:
- 影响因子:
- 作者:
Sean K. Wang;Vidhya Suresh;Adrianna Elashker;Rahma Ajja;Austin Seals;Sameer Acharya;Jeff D. Williamson;Justin Moore;Hayden Bosworth;Yashashwi Pokharel - 通讯作者:
Yashashwi Pokharel
University of California at Berkeley Berkeley, CA, USA March 24–27, 2011
加州大学伯克利分校 美国加利福尼亚州伯克利 2011 年 3 月 24-27 日
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
G. A. Antonelli;L. Bienvenu;L. Dries;Deirdre Haskell;Justin Moore;Christian Rosendal Uic;Neil Thapen;S. Thomas - 通讯作者:
S. Thomas
Justin Moore的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Justin Moore', 18)}}的其他基金
Descriptive Set Theory And Polish Groups at the Bernoulli Center
伯努利中心的描述性集合论和波兰群
- 批准号:
1800263 - 财政年份:2017
- 资助金额:
$ 2.87万 - 项目类别:
Standard Grant
Fields Institute Thematic Program: Forcing and its Applications
菲尔兹研究所主题项目:力及其应用
- 批准号:
1162052 - 财政年份:2012
- 资助金额:
$ 2.87万 - 项目类别:
Standard Grant
相似海外基金
Conference: 57th Spring Topology and Dynamical Systems Conference
会议:第57届春季拓扑与动力系统会议
- 批准号:
2348830 - 财政年份:2024
- 资助金额:
$ 2.87万 - 项目类别:
Standard Grant
Conference: Underrepresented Students in Algebra and Topology Research Symposium (USTARS)
会议:代数和拓扑研究研讨会(USTARS)中代表性不足的学生
- 批准号:
2400006 - 财政年份:2024
- 资助金额:
$ 2.87万 - 项目类别:
Standard Grant
CAREER: Geometry and topology of quantum materials
职业:量子材料的几何和拓扑
- 批准号:
2340394 - 财政年份:2024
- 资助金额:
$ 2.87万 - 项目类别:
Continuing Grant
Conference: Midwest Topology Seminar
会议:中西部拓扑研讨会
- 批准号:
2341204 - 财政年份:2024
- 资助金额:
$ 2.87万 - 项目类别:
Standard Grant
Topology in many-body quantum systems in and out of equilibrium
处于平衡状态和非平衡状态的多体量子系统中的拓扑
- 批准号:
2300172 - 财政年份:2024
- 资助金额:
$ 2.87万 - 项目类别:
Continuing Grant
Algebraic Structures in String Topology
弦拓扑中的代数结构
- 批准号:
2405405 - 财政年份:2024
- 资助金额:
$ 2.87万 - 项目类别:
Standard Grant
Conference: Combinatorial and Analytical methods in low-dimensional topology
会议:低维拓扑中的组合和分析方法
- 批准号:
2349401 - 财政年份:2024
- 资助金额:
$ 2.87万 - 项目类别:
Standard Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
- 批准号:
24K06659 - 财政年份:2024
- 资助金额:
$ 2.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Gauge-theoretic Floer invariants, C* algebras, and applications of analysis to topology
职业:规范理论 Floer 不变量、C* 代数以及拓扑分析应用
- 批准号:
2340465 - 财政年份:2024
- 资助金额:
$ 2.87万 - 项目类别:
Continuing Grant
CAREER: Elucidating the Impact of Side-Chain Topology on the Structure-Property Relationship in Bottlebrush Polymers
职业:阐明侧链拓扑对洗瓶刷聚合物结构-性能关系的影响
- 批准号:
2340664 - 财政年份:2024
- 资助金额:
$ 2.87万 - 项目类别:
Continuing Grant