Collaborative Research: Physics-Based Modeling and Simulation for Post-Mastectomy Breast Reconstructive Surgery
合作研究:基于物理的乳房切除术后乳房重建手术建模与仿真
基本信息
- 批准号:0402591
- 负责人:
- 金额:$ 27.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-09-01 至 2007-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0402591KakadiarisBreast cancer is the second most frequent cancer diagnosis among American women today, after skin cancer. Post-mastectomy breast reconstruction is the third most frequently performed reconstructive procedure, superseded only by tumor removal and hand surgery. The psychological distress that accompanies a lump found in the breast, and the subsequent mastectomy is compounded by the limitations of contemporary reconstructive procedures; without a trusted reconstruction procedure, the specter of a disfiguring operation adds to the fear. Conventional procedures for reconstructing breast, or other soft tissue defects requiring adipose tissue, involve "robbing Peter to pay Paul". That is, tissue from a donor site on the patient is used to reconstruct the receiving site. However, it is difficult to predict exactly how the breast will be changed by a specific procedure in any particular patient. What size of donor tissue will yield the desired breast shape? How large a tension will be generated in the skin? Is there enough tissue to recreate a breast that would meet the expectations of the patient? Currently, there are no methods that would predict the outcome of the surgery.The goal of this proposal is to develop a predictive methodology to replace the trial and error method currently practiced. The proposed method is based on the large deformation analysis of mechanics; the skin covering the breast is modeled as a nonlinear elastic membrane or shell whose mechanical properties must be determined. After the shape, the size, and the mass of implant tissue and the skin on the breast are known, a nonlinear analysis will be used to calculate the resulting end shape. Conversely, if the end shape is prescribed, the analysis should yield the amount of implant tissue, and the shape and size of the skin necessary. The specific aims of this project were: 1) to develop an analytical model and numerical simulations to predict the breast shape for known initial conditions using generic data as well as physical and computational phantoms. This is based on the mechanics of finitely deforming bodies, 2) to develop a parametric deformable model that describes the shape of a female breast mathematically and 3) to experimentally verify these methods using phantoms and to demonstrate their utility for breast reconstructive surgery. Successful completion of this research has the potential to improve the quality of life for individuals recovering from post-mastectomy reconstruction operations. The predictive methodology will also lead to reduction in surgical time. The models that will be developed will apply to other organs and tissues as well and thus will increase understanding of soft tissue modeling and surgical simulation.
乳腺癌是当今美国女性中第二常见的癌症诊断,仅次于皮肤癌。乳房切除后乳房重建术是第三种最常用的重建术,仅次于肿瘤切除和手部手术。伴随着乳房肿块和随后的乳房切除而来的心理痛苦,加上当代重建程序的局限性;如果没有可信的重建程序,毁容手术的幽灵会增加恐惧。传统的乳房重建程序,或其他需要脂肪组织的软组织缺陷,都需要“拆东墙补西墙”。也就是说,患者身上供体部位的组织被用来重建接受部位。然而,很难准确地预测在任何特定的患者中,特定的手术将如何改变乳房。多大的供体组织可以产生所需的乳房形状?皮肤会产生多大的张力?是否有足够的组织来重建符合患者期望的乳房?目前,还没有预测手术结果的方法。这项提议的目标是开发一种预测方法,以取代目前正在实施的试错法。该方法基于力学的大变形分析,将覆盖乳房的皮肤模型化为非线性弹性膜或壳,必须确定其力学性质。在知道乳房上的植入组织和皮肤的形状、大小和质量后,将使用非线性分析来计算得到的末端形状。相反,如果规定了端部形状,分析应该产生植入组织的数量,以及所需的皮肤形状和大小。这个项目的具体目标是:1)开发一个分析模型和数值模拟,以使用通用数据以及物理和计算模型来预测已知初始条件下的乳房形状。这是基于有限变形体的力学,2)开发一个参数可变形模型,从数学上描述女性乳房的形状,以及3)使用体模对这些方法进行实验验证,并演示它们在乳房重建手术中的应用。这项研究的成功完成有可能改善乳腺癌切除后重建手术后恢复的个人的生活质量。预测性方法也将导致手术时间的减少。将开发的模型也将适用于其他器官和组织,因此将增加对软组织建模和手术模拟的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ioannis Kakadiaris其他文献
AI-enabled Cardiac Chambers Volumetry and Calcified Plaque Characterization in Coronary Artery Calcium (CAC) Scans (AI-CAC) Significantly Improves on Agatston CAC Score for Predicting All Cardiovascular Events: The Multi-Ethnic Study of Atherosclerosis
冠状动脉钙 (CAC) 扫描 (AI-CAC) 中支持 AI 的心室容量和钙化斑块特征显着改善 Agatston CAC 评分,用于预测所有心血管事件:动脉粥样硬化的多种族研究
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
M. Naghavi;A. Reeves;K. Atlas;Chenyu Zhang;T. Atlas;C. Henschke;D. Yankelevitz;M. Budoff;Dong Li;Sion Roy;Khurram Nasir;Jagat Narula;Ioannis Kakadiaris;S. Molloi;Zahi Fayad;David Maron;Michael McConnell;Kim Williams;Daniel Levy;Nathan S Wong - 通讯作者:
Nathan S Wong
Introduction to the special issue on human modeling, analysis, and synthesis
- DOI:
10.1007/s00138-003-0122-5 - 发表时间:
2003-09-01 - 期刊:
- 影响因子:2.300
- 作者:
Ioannis Kakadiaris;Rajeev Sharma;Mohammed Yeasin - 通讯作者:
Mohammed Yeasin
Developing a healthy food access index (HFAI): Web-based mapping and future directions for AI integrations
开发健康食品获取指数(HFAI):基于网络的绘图以及人工智能集成的未来方向
- DOI:
10.1016/j.cities.2025.105908 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:6.600
- 作者:
Junfeng Jiao;Kijin Seong;Marcus Sammer;Ryan Hardesty Lewis;Alison Reese;Norma Olvera;Susie L. Gronseth;Elizabeth Anderson-Fletcher;Ioannis Kakadiaris - 通讯作者:
Ioannis Kakadiaris
Artificial intelligence applied to coronary artery calcium scans (AI-CAC) significantly improves cardiovascular events prediction
人工智能应用于冠状动脉钙扫描(AI-CAC)可显著改善心血管事件预测
- DOI:
10.1038/s41746-024-01308-0 - 发表时间:
2024-11-05 - 期刊:
- 影响因子:15.100
- 作者:
Morteza Naghavi;Anthony P. Reeves;Kyle Atlas;Chenyu Zhang;Thomas Atlas;Claudia I. Henschke;David F. Yankelevitz;Matthew J. Budoff;Dong Li;Sion K. Roy;Khurram Nasir;Sabee Molloi;Zahi Fayad;Michael V. McConnell;Ioannis Kakadiaris;David J. Maron;Jagat Narula;Kim Williams;Prediman K. Shah;Daniel Levy;Nathan D. Wong - 通讯作者:
Nathan D. Wong
Ioannis Kakadiaris的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ioannis Kakadiaris', 18)}}的其他基金
NSF Convergence Accelerator Track J: Artificial-Intelligence-Based Decision Support for Equitable Food and Nutrition Security in the Houston Area
NSF 融合加速器轨道 J:基于人工智能的决策支持,实现休斯顿地区公平的粮食和营养安全
- 批准号:
2236305 - 财政年份:2022
- 资助金额:
$ 27.25万 - 项目类别:
Standard Grant
D-ISN/Collaborative Research: Financial and Network Disruptions in Counterfeit and Illegal Medicines Trade
D-ISN/合作研究:假冒和非法药品贸易中的财务和网络中断
- 批准号:
2146335 - 财政年份:2022
- 资助金额:
$ 27.25万 - 项目类别:
Standard Grant
SCC-CIVIC-FA Track B: Artificial-Intelligence-Based Decision Support for Equitable and Resilient Food Distribution during Pandemics and Extreme Weather Events
SCC-CIVIC-FA 轨道 B:基于人工智能的决策支持,在大流行和极端天气事件期间实现公平和有弹性的粮食分配
- 批准号:
2133352 - 财政年份:2021
- 资助金额:
$ 27.25万 - 项目类别:
Standard Grant
SCC-CIVIC-PG Track B: Equitable Food-Security: Disaster-resilient supply chains for pandemics and extreme weather events
SCC-CIVIC-PG 轨道 B:公平粮食安全:应对流行病和极端天气事件的抗灾供应链
- 批准号:
2043988 - 财政年份:2021
- 资助金额:
$ 27.25万 - 项目类别:
Standard Grant
Supporting Student Development Activities at the International Joint Conference on Biometrics (IJCB2020)
在国际生物识别联合会议(IJCB2020)上支持学生发展活动
- 批准号:
2038085 - 财政年份:2020
- 资助金额:
$ 27.25万 - 项目类别:
Standard Grant
D-ISN: TRACK 2: Collaborative Research: Financial Network Disruptions in Illicit and Counterfeit Medicines (FIND-M)
D-ISN:轨道 2:合作研究:非法和假冒药品的金融网络中断 (FIND-M)
- 批准号:
2039946 - 财政年份:2020
- 资助金额:
$ 27.25万 - 项目类别:
Standard Grant
I-Corps: Exploiting matching score distributions to improve biometric recognition
I-Corps:利用匹配分数分布来提高生物特征识别
- 批准号:
1561151 - 财政年份:2015
- 资助金额:
$ 27.25万 - 项目类别:
Standard Grant
Segmentation of 3D Tubular Structures
3D 管状结构的分割
- 批准号:
0638875 - 财政年份:2006
- 资助金额:
$ 27.25万 - 项目类别:
Standard Grant
2003 Workshop on Robotics and Computer Vision: PI Meeting
2003 年机器人和计算机视觉研讨会:PI 会议
- 批准号:
0334822 - 财政年份:2003
- 资助金额:
$ 27.25万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
- 批准号:
2321102 - 财政年份:2024
- 资助金额:
$ 27.25万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Great Lakes Mathematical Physics Meetings 2024-2025
合作研究:会议:2024-2025 年五大湖数学物理会议
- 批准号:
2401257 - 财政年份:2024
- 资助金额:
$ 27.25万 - 项目类别:
Standard Grant
Collaborative Research: From Courses to Careers - Addressing Ableism in Physics through Faculty-Student Partnerships
合作研究:从课程到职业——通过师生合作解决物理学能力歧视问题
- 批准号:
2336368 - 财政年份:2024
- 资助金额:
$ 27.25万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
- 批准号:
2321103 - 财政年份:2024
- 资助金额:
$ 27.25万 - 项目类别:
Standard Grant
Collaborative Research: From Courses to Careers - Addressing Ableism in Physics through Faculty-Student Partnerships
合作研究:从课程到职业——通过师生合作解决物理学能力歧视问题
- 批准号:
2336367 - 财政年份:2024
- 资助金额:
$ 27.25万 - 项目类别:
Standard Grant
Collaborative Research: Improving Upper Division Physics Education and Strengthening Student Research Opportunities at 14 HSIs in California
合作研究:改善加州 14 所 HSI 的高年级物理教育并加强学生研究机会
- 批准号:
2345092 - 财政年份:2024
- 资助金额:
$ 27.25万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Great Lakes Mathematical Physics Meetings 2024-2025
合作研究:会议:2024-2025 年五大湖数学物理会议
- 批准号:
2401258 - 财政年份:2024
- 资助金额:
$ 27.25万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
- 批准号:
2321104 - 财政年份:2024
- 资助金额:
$ 27.25万 - 项目类别:
Standard Grant
Collaborative Research: Improving Upper Division Physics Education and Strengthening Student Research Opportunities at 14 HSIs in California
合作研究:改善加州 14 所 HSI 的高年级物理教育并加强学生研究机会
- 批准号:
2345093 - 财政年份:2024
- 资助金额:
$ 27.25万 - 项目类别:
Standard Grant
Collaborative Research: WoU-MMA: Understanding the Physics and Electromagnetic Counterparts of Neutrino Blazars with Numerical Simulations
合作研究:WoU-MMA:通过数值模拟了解中微子耀变体的物理和电磁对应物
- 批准号:
2308090 - 财政年份:2023
- 资助金额:
$ 27.25万 - 项目类别:
Standard Grant