NER: Scalable techniques for massively parallel nanomaterial simulations for long-time behavior

NER:用于长时间行为的大规模并行纳米材料模拟的可扩展技术

基本信息

  • 批准号:
    0403746
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-06-01 至 2006-05-31
  • 项目状态:
    已结题

项目摘要

This proposal was received in response to Nanoscale science and engineering initiative NSF 03-043, category NER. The investigators address a class of problems involving an assembly of carbon nanotubes, wherein interfaces play a key role. This class of problems pertains to long time scale simulations in which classical transition state theories are not applicable. The solution strategy is based on harnessing the power of massive parallelism. Conventional parallelization through spatial decomposition will not be effective since that will lead to fine granularity. The proposed effort is aimed at time-parallelization using a predictor-verifier approach. One of the key research issues is to develop appropriate predictors. Successful results from this endeavor can be integrated with multi-scale simulations that can predict material properties to time scales several orders of magnitude greater than that today.The above research effort has applications in the areas of nanocoatings, nanosensors, nanoelectronics and nanocomposites. In the current stage of the development of nanotechnology, computation (theory, modeling and simulations) is playing a leading role, compared to experiments, because of size effects. One of the stumbling blocks to the widespread use of computational simulations is the difficulty in achieving realistic time scales. This research addresses this key issue. The specific applications mentioned above are but a few of the currently envisioned applications of nanotechnology for which this research on nanoscale interfaces will be directly applicable. Some of the fundamental understanding of both physics and computations has potential use for a wider class of applications, including nano-biotechnology.
该提案是响应纳米科学和工程倡议NSF 03-043,类别NER而收到的。研究人员解决了一类涉及碳纳米管组装的问题,其中界面起着关键作用。这类问题涉及到长时间尺度的模拟,其中经典的过渡态理论是不适用的。解决方案策略基于利用大规模并行的力量。通过空间分解的传统并行化将是无效的,因为这将导致细粒度。所提出的努力的目的是在时间并行化使用预测验证的方法。研究的关键问题之一是开发适当的预测因子。这一奋进的成功结果可以与多尺度模拟相结合,可以预测比今天大几个数量级的时间尺度的材料性能。上述研究工作在纳米涂层、纳米传感器、纳米电子学和纳米复合材料领域有应用。在纳米技术发展的当前阶段,由于尺寸效应,与实验相比,计算(理论,建模和模拟)正在发挥主导作用。广泛使用计算模拟的绊脚石之一是难以实现逼真的时间尺度。这项研究解决了这个关键问题。上面提到的具体应用只是目前设想的纳米技术应用中的几个,对纳米级界面的研究将直接适用于这些应用。对物理学和计算的一些基本理解对更广泛的应用有潜在的用途,包括纳米生物技术。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ashok Srinivasan其他文献

Haploidentical Donor Transplantations with TLI, Fludarabine, Cyclophosphamide, and ATG Are Safe and Effective Treatment for Graft Failure
  • DOI:
    10.1016/j.bbmt.2012.11.459
  • 发表时间:
    2013-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Brandon Matthew Triplett;Mari Hashitate Dallas;Christine Mary Hartford;Asha Pillai;David Shook;Ashok Srinivasan;Wing Leung
  • 通讯作者:
    Wing Leung
Long Term Outcomes of Pediatric Patients with Sickle Cell Disease Who Underwent a Reduced Intensity T Cell Depleted Haploidentical Transplantation
  • DOI:
    10.1016/j.bbmt.2012.11.530
  • 发表时间:
    2013-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Mari Hashitate Dallas;David Shook;Ashok Srinivasan;Christine Mary Hartford;Brandon Matthew Triplett;Wing Leung
  • 通讯作者:
    Wing Leung
Relationships between contrast-enhanced computed tomography features of hard palate cancer and pathological depth of invasion
  • DOI:
    10.1016/j.oooo.2022.07.002
  • 发表时间:
    2022-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Akira Baba;Ryo Kurokawa;Mariko Kurokawa;Jonathan B. McHugh;Cisley Hines;Yoshiaki Ota;Ashok Srinivasan
  • 通讯作者:
    Ashok Srinivasan
Updated Efficacy and Safety of Tabelecleucel in Patients with Epstein-Barr Virus-Positive (EBV<sup>+</sup>) Leiomyosarcomas (LMS)
  • DOI:
    10.1182/blood-2022-157765
  • 发表时间:
    2022-11-15
  • 期刊:
  • 影响因子:
  • 作者:
    Lauren S Jiménez-Kurlander;Gerald Behr;Nancy J Bunin;Ekaterina Doubrovina;Rajani Dinavahi;Laurence Gamelin;Armin Ghobadi;Leo Mascarenhas;Sarah Nikiforow;Richard J O'Reilly;Anita Price;Barry Shulkin;Ashok Srinivasan;Stephanie Suser;Justin Wahlstrom;Baodong Xing;Susan Prockop
  • 通讯作者:
    Susan Prockop
Preferential expansion of CD8sup+/sup CD19-CAR T cells postinfusion and the role of disease burden on outcome in pediatric B-ALL
CD8+CD19-CAR T 细胞输注后优先扩增及疾病负荷对儿童 B-ALL 预后的作用
  • DOI:
    10.1182/bloodadvances.2021006293
  • 发表时间:
    2022-11-08
  • 期刊:
  • 影响因子:
    7.100
  • 作者:
    Aimee C. Talleur;Amr Qudeimat;Jean-Yves Métais;Deanna Langfitt;Ewelina Mamcarz;Jeremy Chase Crawford;Sujuan Huang;Cheng Cheng;Caitlin Hurley;Renee Madden;Akshay Sharma;Ali Suliman;Ashok Srinivasan;M. Paulina Velasquez;Esther A. Obeng;Catherine Willis;Salem Akel;Seth E. Karol;Hiroto Inaba;Allison Bragg;Stephen Gottschalk
  • 通讯作者:
    Stephen Gottschalk

Ashok Srinivasan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ashok Srinivasan', 18)}}的其他基金

IPA Agreement with University of West Florida 1st year (Srinivasan 2022)
与西佛罗里达大学签订 IPA 协议第一年(Srinivasan 2022)
  • 批准号:
    2219049
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Intergovernmental Personnel Award
Collaborative Research: Petascale Simulation of Viral Infection Propagation Through Air Travel
合作研究:通过航空旅行传播病毒感染的千万亿级模拟
  • 批准号:
    1640822
  • 财政年份:
    2016
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: Simulation-Based Policy Analysis for Reducing Ebola Transmission Risk in Air Travel
合作研究:基于模拟的政策分析,降低航空旅行中的埃博拉传播风险
  • 批准号:
    1525061
  • 财政年份:
    2015
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
MSPA-MCS: Data-Driven Parallelization of Time in Molecular Dynamics Simulations
MSPA-MCS:分子动力学模拟中数据驱动的时间并行化
  • 批准号:
    0626180
  • 财政年份:
    2006
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

CNS Core: Small: Core Scheduling Techniques and Programming Abstractions for Scalable Serverless Edge Computing Engine
CNS Core:小型:可扩展无服务器边缘计算引擎的核心调度技术和编程抽象
  • 批准号:
    2322919
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Unified, Scalable, and Reproducible Neurostatistical Software
统一、可扩展且可重复的神经统计软件
  • 批准号:
    10725500
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
BRAIN CONNECTS: PatchLink, scalable tools for integrating connectomes, projectomes, and transcriptomes
大脑连接:PatchLink,用于集成连接组、投影组和转录组的可扩展工具
  • 批准号:
    10665493
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
Data Resource and Administrative Coordination Center for the Scalable and Systematic Neurobiology of Psychiatric and Neurodevelopmental Disorder Risk Genes Consortium
精神科和神经发育障碍风险基因联盟的可扩展和系统神经生物学数据资源和行政协调中心
  • 批准号:
    10642251
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
High-throughput Spheroid Bioprinting Technology for Scalable Fabrication of Tissues
用于可扩展组织制造的高通量球体生物打印技术
  • 批准号:
    10744937
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
Specialized Tools and Auto-updatable Scalable Interactive Databases to Study isomiRs, tRFs and rRFs in Human and Mouse
用于研究人类和小鼠 isomiR、tRF 和 rRF 的专用工具和可自动更新、可扩展的交互式数据库
  • 批准号:
    10736401
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
Assays for acceleration: from fit-for-purpose models to scalable assays of broad systemic and mucosal protection against all strains of Group A Streptococcus
加速测定:从适合目的模型到针对 A 组链球菌所有菌株的广泛全身和粘膜保护的可扩展测定
  • 批准号:
    10576786
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
Development of a rapid, scalable, and deployable point-of-care blood volume diagnostic for monitoring postpartum and trauma-related hemorrhage
开发快速、可扩展且可部署的护理点血容量诊断,用于监测产后和创伤相关出血
  • 批准号:
    10603819
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
Harnessing Network Science to Personalize Scalable Interventions for Adolescent Depression
利用网络科学对青少年抑郁症进行个性化的可扩展干预措施
  • 批准号:
    10860020
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
Examining the electroencephalographic fingerprint of default mode network hyperconnectivity for scalable and personalized neurofeedback in schizophrenia
检查默认模式网络超连接的脑电图指纹,以实现精神分裂症的可扩展和个性化神经反馈
  • 批准号:
    10509002
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了