Data Resource and Administrative Coordination Center for the Scalable and Systematic Neurobiology of Psychiatric and Neurodevelopmental Disorder Risk Genes Consortium

精神科和神经发育障碍风险基因联盟的可扩展和系统神经生物学数据资源和行政协调中心

基本信息

  • 批准号:
    10642251
  • 负责人:
  • 金额:
    $ 150万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-05-09 至 2028-04-30
  • 项目状态:
    未结题

项目摘要

ABSTRACT Our team proposes to lead the SSPsyGene consortium into the Data Biosphere. We will do this by adapting data biosphere technology and management techniques we have already deployed for other NIH institutes, NIH Common Fund, the NIH Office of the Director, the Chan Zuckerberg Initiative (CZI), and the California Institute for Regenerative Medicine (CIRM), making SSPsyGene interoperable across multiple disease areas. We also bring our expertise with neurological data through our involvement with BICCN, Psychiatric Cell Map Initiative, CZI’s Pediatric Brain Map, NHGRI's Center for Live Cell Genomics/Biotechnology, and our close relationship with PsychENCODE and the Allen Brain Institute. For SSPsyGene, we have 4 major tasks: (1) We will assemble all the information necessary to empower the consortium to choose between 100 and 250 genes to experimentally characterize (Aim 2). We have identified more than 20 different types of information to be integrated for this purpose, many of which are already in the UCSC Genome Browser. We will apply multiple ranking algorithms to this integrated information source to guide the SSPsyGene Consortium’s decision process. (2) We will work to establish an ontology structure that is sufficiently expressive yet fully maintainable, supporting FAIR data use by both researchers and machines (Aim 3). Our previous work with the UCSC Genome Browser and our close relationships with ontology organizations will help us to bridge the gaps between molecular, cellular, tissue/organoid, and model organism measurements, and to extend these resources when needed. Inspired by our experience with the clinical ontologies in OMOP and FHIR, we propose a novel service to allow researchers to query phenotype-phenotype associations in large clinical cohorts, such as All of Us and HEDIS, the database of records from Medicare and Medicaid. (3) We will create a state-of-the-art SSPsyGene Data Biosphere fully compatible with those we created for other NIH institutes (Aim 4). Our emphasis will be on standardization of the data submission process with extensive quality monitoring to ensure timely and effective data release. We will leverage our deep involvement with the Global Alliance for Genomics and Health to ensure all data and metadata will meet FAIR standards. We have experience with the complex data types that will be generated by the SSPsyGene consortium, including -omics, imaging, electrophysiology and other data types. (4) We have served as trusted third party organizers to many NIH consortia, developing a reputation for fairness and impartiality in data sharing and publication, and expertise in coordinating, generating consensus, publishing results, and creating a resource with maximal impact (Aim 5). Based on our strengths in biomedical data, metadata and ontologies, FAIR platforms, and consortium leadership, we are confident that we will achieve all the goals of the SSPsyGene Consortium.
摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

DAVID H HAUSSLER其他文献

DAVID H HAUSSLER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('DAVID H HAUSSLER', 18)}}的其他基金

Enhance UCSC Xena: extend interactive visualization to ultra-large-scale multi-omics data and integrate with analysis resources
增强 UCSC Xena:将交互式可视化扩展到超大规模多组学数据并与分析资源集成
  • 批准号:
    10687189
  • 财政年份:
    2021
  • 资助金额:
    $ 150万
  • 项目类别:
Center for Live Cell Genomics
活细胞基因组学中心
  • 批准号:
    10307037
  • 财政年份:
    2021
  • 资助金额:
    $ 150万
  • 项目类别:
Enhance UCSC Xena: extend interactive visualization to ultra-large-scale multi-omics data and integrate with analysis resources
增强 UCSC Xena:将交互式可视化扩展到超大规模多组学数据并与分析资源集成
  • 批准号:
    10187394
  • 财政年份:
    2021
  • 资助金额:
    $ 150万
  • 项目类别:
Enhance UCSC Xena: extend interactive visualization to ultra-large-scale multi-omics data and integrate with analysis resources
增强 UCSC Xena:将交互式可视化扩展到超大规模多组学数据并与分析资源集成
  • 批准号:
    10430132
  • 财政年份:
    2021
  • 资助金额:
    $ 150万
  • 项目类别:
Center for Live Cell Genomics
活细胞基因组学中心
  • 批准号:
    10676332
  • 财政年份:
    2021
  • 资助金额:
    $ 150万
  • 项目类别:
Nanoparticle Tracking Analyzer (NTA) for the Center for Live Cell Genomics
用于活细胞基因组学中心的纳米颗粒跟踪分析仪 (NTA)
  • 批准号:
    10817569
  • 财政年份:
    2021
  • 资助金额:
    $ 150万
  • 项目类别:
Enabling Comparative Pangenomics
实现比较泛基因组学
  • 批准号:
    10555318
  • 财政年份:
    2020
  • 资助金额:
    $ 150万
  • 项目类别:
Development of Advanced Preclinical Models for Pediatric Solid Tumors
儿科实体瘤先进临床前模型的开发
  • 批准号:
    10579262
  • 财政年份:
    2020
  • 资助金额:
    $ 150万
  • 项目类别:
Development of Advanced Preclinical Models for Pediatric Solid Tumors
儿科实体瘤先进临床前模型的开发
  • 批准号:
    10356873
  • 财政年份:
    2020
  • 资助金额:
    $ 150万
  • 项目类别:
Center for Big Data in Translational Genomics
转化基因组学大数据中心
  • 批准号:
    9277519
  • 财政年份:
    2014
  • 资助金额:
    $ 150万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 150万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了