High-throughput Spheroid Bioprinting Technology for Scalable Fabrication of Tissues
用于可扩展组织制造的高通量球体生物打印技术
基本信息
- 批准号:10744937
- 负责人:
- 金额:$ 52.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAirAlginatesAnatomyBathingBenchmarkingBiocompatible MaterialsBone TissueCell DensityCell SurvivalCellsCollaborationsComplexCraniofacial AbnormalitiesDataDefectDepositionDevelopmentDevice or Instrument DevelopmentDisease modelDrug ScreeningEffectivenessEncapsulatedExhibitsExtracellular MatrixGelGoalsHumanHydrogelsIndividualIndustryInkKnowledgeMeasurableMedicalModelingNude RatsOperative Surgical ProceduresOrganOrganoidsPatternPhysiologicalPolymersPositioning AttributeProcessPropertyRattusRegenerative MedicineScienceShapesSiteSpeedStructureStructure of parenchyma of lungSurfaceTechniquesTechnologyTestingTissue EngineeringTissue TransplantationTissuesTranslationsWorkbioprintingbonecell injurycraniofacialcraniofacial repaircraniomaxillofacialdensitydesigndrug testingexperiencefabricationhigh throughput technologyinstrumentmanufacturing technologynew technologynovelosteogenicprocess repeatabilityrepairedscaffoldself assemblytechnology developmenttool
项目摘要
ROJECT SUMMARY/ABSTRACT
The ability to bioprint cellular aggregates, such as spheroids, in a high-throughput manner into desired patterns
or cellular microenvironments is crucial to facilitate fabrication of scalable constructs with cell densities similar to
that of native tissues and organs. Despite the progress in spheroid bioprinting technologies, the major
shortcomings associated with them, such as poor positioning of spheroids, significant loss of viability and
structural integrity, poor repeatability of the process when using non-uniform size spheroids, inability to form
complex 3D shapes, and most importantly, the lack of scalability, limit their translation. In this project, we propose
a highly unique technology, henceforth referred as “high-throughput spheroid (HTS) bioprinting,” that enables
simultaneous bioprinting of several spheroids with an order of magnitude size range and minimal cellular
damage, at a high positional precision and an unprecedented speed. The proposed technology is highly versatile
and enables the bioprinting of complex structures either (1) onto the surface of gel substrates (i.e., hydrogels) in
a scaffold-based manner or (2) within support baths (i.e., sacrificial microgels) in a scaffold-free manner for
scalable fabrication of tissues. In Specific Aim 1, we propose to develop HTS bioprinting, which has the capability
of depositing several spheroids simultaneously on 3D gel substrates, thus bioprinting a complete layer of the 3D
tissue at once in a rapid fashion (i.e., 100 spheroids can be bioprinted in <20 sec). We will couple HTS bioprinting
with extrusion-based bioprinting of gel substrates and explore the spheroid-gel interactions, across a wide range
of hydrogels, during the bioprinting process. To exemplify the technology, we will demonstrate bioprinting
intraoperatively via depositing osteogenically-committed bone spheroids for the repair of craniomaxillofacial
bone defects in a rat model. In Specific Aim 2, we will reconfigure the HTS bioprinting technology for freeform
positioning of spheroids within sacrificial support baths. Here, we will bioprint spheroids sequentially (one after
the other) in a rapid manner and pattern them according to the target design. We will explore the gel-spheroid-
bioprinting process interactions, where the effectiveness of the technology will be tested for multiple support
baths, including alginate microgels to be fabricated using the air-jet assisted coaxial flow technique along with a
commercially available benchmark. We will exemplify the utilization of the technology for fabrication of
anatomically-relevant complex-shaped human bronchopulmonary segments. In this regard, we have formed a
complementary collaboration that merges essential domain knowledge in bioprinting, bioprinting process and
instrument development, biomaterials, craniofacial surgery, and bone and lung tissue engineering with the depth
necessary to propel the proposed work towards meaningful advances that would otherwise not be possible.
Successful completion of the proposed work is anticipated to give rise to an advanced bioprinting technology for
HTS bioprinting and thereby provide a novel tool for fabrication of scalable tissues and organs.
研究概要/摘要
以高通量方式将细胞聚集体(如球状体)生物打印成所需图案的能力
或细胞微环境是至关重要的,以促进制造可扩展的构建体,
即天然组织和器官的。尽管球状体生物打印技术取得了进展,但主要的
与它们相关的缺点,例如球状体的定位差,存活力的显著损失,
结构完整性,当使用不均匀尺寸的球状体时,工艺的可重复性差,不能形成
复杂的3D形状,最重要的是,缺乏可扩展性,限制了它们的转换。在这个项目中,我们建议
一种高度独特的技术,此后被称为“高通量球体(HTS)生物打印”,
同时生物打印具有数量级尺寸范围和最小细胞密度的几个球状体
以高定位精度和前所未有的速度进行破坏。所提出的技术是高度通用的
并且能够将复杂结构生物打印到(1)凝胶基质的表面上(即,水凝胶)中
基于支架的方式或(2)在支撑槽内(即,牺牲微凝胶)以无支架的方式用于
组织的可扩展制造。在具体目标1中,我们建议开发HTS生物打印,它具有以下能力:
在3D凝胶基质上同时沉积几个球状体,从而生物打印出一个完整的3D层。
组织以快速的方式一次(即,100个球状体可以在<20秒内生物打印)。我们将把HTS生物打印
与基于挤出的凝胶基质生物打印,并探索球状体-凝胶相互作用,在很宽的范围内,
在生物打印的过程中。为了验证这项技术,我们将展示生物打印
术中沉积成骨定向骨球修复颅颌面缺损
大鼠模型中的骨缺损。在具体目标2中,我们将重新配置HTS生物打印技术,
将球状体定位在牺牲载体浴内。在这里,我们将生物打印球体顺序(一个后
另一个)以快速的方式并根据目标设计图案化它们。我们将探索凝胶球体
生物打印过程的相互作用,其中该技术的有效性将受到多重支持的测试
浴,包括藻酸盐微凝胶,其使用空气喷射辅助同轴流动技术沿着制造,
商用基准。我们将研究利用该技术制造
解剖学相关的复杂形状的人支气管肺段。在这方面,我们已成立了一个
互补合作,将生物打印、生物打印过程和
仪器开发,生物材料,颅面外科,骨和肺组织工程与深度
因此,必须采取必要措施,推动拟议的工作取得有意义的进展,否则就不可能取得这些进展。
拟议工作的成功完成预计将产生先进的生物打印技术,
HTS生物打印,从而为制造可扩展的组织和器官提供了一种新的工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ibrahim Ozbolat其他文献
Ibrahim Ozbolat的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ibrahim Ozbolat', 18)}}的其他基金
Intraoperative bioprinting of composite tissues with zonal stratification for craniomaxillofacial reconstruction
用于颅颌面重建的带状分层复合组织的术中生物打印
- 批准号:
10538586 - 财政年份:2020
- 资助金额:
$ 52.82万 - 项目类别:
Intraoperative bioprinting of composite tissues with zonal stratification for craniomaxillofacial reconstruction
用于颅颌面重建的带状分层复合组织的术中生物打印
- 批准号:
10322402 - 财政年份:2020
- 资助金额:
$ 52.82万 - 项目类别:
Intraoperative bioprinting of composite tissues with zonal stratification for craniomaxillofacial reconstruction
用于颅颌面重建的带状分层复合组织的术中生物打印
- 批准号:
9887803 - 财政年份:2020
- 资助金额:
$ 52.82万 - 项目类别:
相似国自然基金
湍流和化学交互作用对H2-Air-H2O微混燃烧中NO生成的影响研究
- 批准号:51976048
- 批准年份:2019
- 资助金额:61.0 万元
- 项目类别:面上项目
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 52.82万 - 项目类别:
Standard Grant
SBIR Phase I: High-Efficiency Liquid Desiccant Regenerator for Desiccant Enhanced Evaporative Air Conditioning
SBIR 第一阶段:用于干燥剂增强蒸发空调的高效液体干燥剂再生器
- 批准号:
2335500 - 财政年份:2024
- 资助金额:
$ 52.82万 - 项目类别:
Standard Grant
Catalyzing Sustainable Air Travel: Unveiling Consumer Willingness to Pay for Sustainable Aviation Fuel through Information Treatment in Choice Experiment and Cross-Country Analysis
促进可持续航空旅行:通过选择实验和跨国分析中的信息处理揭示消费者支付可持续航空燃油的意愿
- 批准号:
24K16365 - 财政年份:2024
- 资助金额:
$ 52.82万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
COMPAS: co integration of microelectronics and photonics for air and water sensors
COMPAS:微电子学和光子学的共同集成,用于空气和水传感器
- 批准号:
10108154 - 财政年份:2024
- 资助金额:
$ 52.82万 - 项目类别:
EU-Funded
Simulating Urban Air Pollution In The Lab
在实验室模拟城市空气污染
- 批准号:
MR/Y020014/1 - 财政年份:2024
- 资助金额:
$ 52.82万 - 项目类别:
Fellowship
Collaborative Research: Phenotypic and lineage diversification after key innovation(s): multiple evolutionary pathways to air-breathing in labyrinth fishes and their allies
合作研究:关键创新后的表型和谱系多样化:迷宫鱼及其盟友呼吸空气的多种进化途径
- 批准号:
2333683 - 财政年份:2024
- 资助金额:
$ 52.82万 - 项目类别:
Continuing Grant
Collaborative Research: Phenotypic and lineage diversification after key innovation(s): multiple evolutionary pathways to air-breathing in labyrinth fishes and their allies
合作研究:关键创新后的表型和谱系多样化:迷宫鱼及其盟友呼吸空气的多种进化途径
- 批准号:
2333684 - 财政年份:2024
- 资助金额:
$ 52.82万 - 项目类别:
Continuing Grant
CRII: CSR: Towards an Edge-enabled Software-Defined Vehicle Framework for Dynamic Over-the-Air Updates
CRII:CSR:迈向支持边缘的软件定义车辆框架,用于动态无线更新
- 批准号:
2348151 - 财政年份:2024
- 资助金额:
$ 52.82万 - 项目类别:
Standard Grant
Development of a low-pressure loss air purification device using rotating porous media and a proposal for its use in ventilation systems
使用旋转多孔介质的低压损失空气净化装置的开发及其在通风系统中的使用建议
- 批准号:
24K17404 - 财政年份:2024
- 资助金额:
$ 52.82万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
AIR QUALITY AND HEALTH IMPACT OF PRIMARY SEMI-VOLATILE AND SECONDARY PARTICLES AND THEIR ABATEMENT
一次半挥发性颗粒和二次颗粒对空气质量和健康的影响及其消除
- 批准号:
10100997 - 财政年份:2024
- 资助金额:
$ 52.82万 - 项目类别:
EU-Funded