Group actions and vector bundles in algebraic geometry
代数几何中的群作用和向量丛
基本信息
- 批准号:0403838
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-06-01 至 2008-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS-0403838William A. GrahamThis proposal concerns research on some problems in algebraic geometry that arise in the context of group actions and vector bundles. There are four parts to the proposal. The first part of the proposal is to study lef vector bundles on algebraic varieties. In particular the proposer plans to study a conjecture he has made concerning such bundles, and also to extend to lef bundles some positivity results proved by Fulton and Lazarsfeld for ample bundles. The second part of the proposal concerns labeled directed graphs modeled on the moment graphs defined for certain torus actions on algebraic varieties. The``intersection homology'' Poincare polynomial of such a generalized moment graph is defined, and the goal is to see if this polynomial is palindromic and unimodal for more general graphs of this type, not necessarily arising as moment graphs, but with (as far as can be determined) all the graph-theoretic properties that moment graphs have. The third part of the proposal is to prove a non-negativity theorem about the multiplication in the torus-equivariant K-theory of the flag variety. The fourth part of the proposal is to describe the Riemann-Roch map of a geometric quotient by an algebraic group in terms of the equivariant Riemann-Roch map.Algebraic geometry is a branch of mathematics that has grown out of the study of solutions to polynomial equations. By linking algebra and geometry, it sheds light on both, and has implications for many other branches of mathematics, including number theory, cryptography, and group theory. This project is largely devoted to studying some problems in algebraic geometry that are related to algebraic groups. To say that a problem is related to algebraic groups means that the problem has some symmetry which can make it more accessible to investigation. Sometimes the symmetry can be used to extract essential features of the problem and study them without considering all of the geometric complexities; the moment graphs, which are part of this project, are an example of this.
DMS-0403838 William A.格雷厄姆这一建议涉及研究的一些问题,代数几何中出现的背景下,组行动和向量束。 该建议共分四个部分。 第一部分是研究代数簇上的左向量丛。 特别是提议者计划研究一个猜想,他提出了关于这种束,并扩大到左束的一些积极性的结果证明了富尔顿和Lazarsfeld充分束。该提案的第二部分涉及标记有向图建模的时刻图定义为某些环面行动代数簇。 定义了这样一个广义矩图的"相交同源“庞加莱多项式,目标是看看这个多项式对于这种类型的更一般的图是否是回文的和单峰的,不一定是矩图,但具有(尽可能确定)矩图所具有的所有图论性质。第三部分证明了旗簇环面等变K-理论中乘法的一个非负性定理。建议的第四部分是用等变Riemann-Roch映射来描述代数群的几何商的Riemann-Roch映射。代数几何是数学的一个分支,它是从研究多项式方程的解发展而来的。 通过将代数和几何联系起来,它揭示了两者,并对数学的许多其他分支有影响,包括数论,密码学和群论。 这个项目主要致力于研究代数几何中与代数群有关的一些问题。说一个问题与代数群有关意味着这个问题具有某种对称性,这可以使它更容易被研究。 有时,对称性可以用来提取问题的基本特征,并在不考虑所有几何复杂性的情况下研究它们;作为该项目一部分的矩图就是一个例子。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Graham其他文献
Leontovich boundary condition and associated surface waves
莱昂托维奇边界条件和相关的表面波
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
K. Cherednichenko;William Graham - 通讯作者:
William Graham
Tangent spaces and emT/em-invariant curves of Schubert varieties
舒伯特簇的切空间和 emT/em 不变曲线
- DOI:
10.1016/j.aim.2024.109626 - 发表时间:
2024-05-01 - 期刊:
- 影响因子:1.500
- 作者:
William Graham;Victor Kreiman - 通讯作者:
Victor Kreiman
Estimates of resource use in the public-sector health-care system and the effect of strengthening health-care services in Malawi during 2015–19: a modelling study (emThanzi La Onse/em)
2015 年至 2019 年期间马拉维公共部门医疗保健系统资源使用估计和加强医疗保健服务的效果:一项建模研究(emThanzi La Onse/em)
- DOI:
10.1016/s2214-109x(24)00413-3 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:18.000
- 作者:
Timothy B Hallett;Tara D Mangal;Asif U Tamuri;Nimalan Arinaminpathy;Valentina Cambiano;Martin Chalkley;Joseph H Collins;Jonathan Cooper;Matthew S Gillman;Mosè Giordano;Matthew M Graham;William Graham;Iwona Hawryluk;Eva Janoušková;Britta L Jewell;Ines Li Lin;Robert Manning Smith;Gerald Manthalu;Emmanuel Mnjowe;Sakshi Mohan;Andrew N Phillips - 通讯作者:
Andrew N Phillips
A replicating RNA vaccine confers protection against Crimean-Congo hemorrhagic fever in cynomolgus macaques
一种复制型 RNA 疫苗赋予食蟹猕猴对克里米亚-刚果出血热的保护作用
- DOI:
10.1016/j.ebiom.2025.105698 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:10.800
- 作者:
David W. Hawman;Shanna Leventhal;Kimberly Meade-White;William Graham;Karen Gaffney;Amit Khandhar;Justin Murray;Jessy Prado-Smith;Carl Shaia;Greg Saturday;Henry Buda;Lenny Moise;Jesse Erasmus;Heinz Feldmann - 通讯作者:
Heinz Feldmann
UTILITY OF INTRAPROCEDURAL EQUILIBRIUM RADIONUCLIDE ANGIOGRAM TO EVALUATE LEFT VENTRICULAR FUNCTION AND SYNCHRONY DURING CARDIAC RESYNCHRONIZATION THERAPY
- DOI:
10.1016/s0735-1097(10)60842-x - 发表时间:
2010-03-09 - 期刊:
- 影响因子:
- 作者:
Nitish Badhwar;Deanna L. Green;William Graham;Nancy Wyatt;Teresa DeMarco;J.W. O’Connell;Elias H. Botvinick - 通讯作者:
Elias H. Botvinick
William Graham的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Graham', 18)}}的其他基金
ATD: Improving Analysis of Microbial Mixtures through Sparse Reconstruction Algorithms and Statistical Inference
ATD:通过稀疏重建算法和统计推断改进微生物混合物的分析
- 批准号:
1418744 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Standard Grant
RAPID: Resolving higher trophic-level change within the northern Gulf of Mexico ecosystem as a consequence of the Deepwater Horizon oil spill
RAPID:解决因深水地平线漏油事件导致墨西哥湾北部生态系统内营养级更高的变化
- 批准号:
1043413 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
FSML: Expansion of Research and Education Infrastructure within Dauphin Island Sea Lab's Marine Science Hall
FSML:扩建多芬岛海洋实验室海洋科学馆内的研究和教育基础设施
- 批准号:
0434870 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Standard Grant
International: Developing an Adriatic Summer Institute for Marine Environmental Complexity
国际:针对海洋环境复杂性建立亚得里亚海夏季研究所
- 批准号:
0425311 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Standard Grant
Energetic Consequences of Feeding in a Patchy Environment: Possible Limitations to Jellyfish Production in Coastal Ecosystems
在不完整的环境中进食的能量后果:沿海生态系统中水母生产的可能限制
- 批准号:
9733441 - 财政年份:1998
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
- 批准号:
9206250 - 财政年份:1992
- 资助金额:
-- - 项目类别:
Fellowship Award
Geometric and Electronic Structure and Vibrational Properties of Metal-Semiconductor Interface Systems
金属-半导体界面系统的几何和电子结构以及振动特性
- 批准号:
9120398 - 财政年份:1992
- 资助金额:
-- - 项目类别:
Continuing grant
Travel Support Estuarine Research Federation Meeting, 1992
旅行支持河口研究联合会会议,1992 年
- 批准号:
9216276 - 财政年份:1992
- 资助金额:
-- - 项目类别:
Interagency Agreement
相似国自然基金
骨骼肌中胰高血糖素受体的表达及其调控血糖稳态的作用与机制研究
- 批准号:82370820
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
相似海外基金
Futureproofing Health: Developing a Center for Resilient Health in Disasters
面向未来的健康:建立灾难恢复健康中心
- 批准号:
10835243 - 财政年份:2023
- 资助金额:
-- - 项目类别:
MECHANISMS PROGRAMMING PROTECTIVE IMMUNITY FROM RhCMV-SIV VACCINE AND IL-15 ACTIONS
RhCMV-SIV 疫苗和 IL-15 作用的保护性免疫编程机制
- 批准号:
10723635 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Cellular Mechanisms of Antidepressant Drug Actions in Neuropathic Pain Models
神经病理性疼痛模型中抗抑郁药物作用的细胞机制
- 批准号:
10830180 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Novel mechanisms mediating the rapid antidepressant actions of glyoxylase 1 inhibitors
介导乙二醛酶 1 抑制剂快速抗抑郁作用的新机制
- 批准号:
10557209 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Developing botanical-derived chemical tools for controlling mosquito vectors
开发植物源化学工具来控制蚊媒
- 批准号:
10596724 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Novel mechanisms mediating the rapid antidepressant actions of glyoxylase 1 inhibitors
介导乙二醛酶 1 抑制剂快速抗抑郁作用的新机制
- 批准号:
10351962 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Phenotypic assay for drug discovery and personalized medicine based on real-time vibrational spectroscopy enhanced by plasmonic metasurfaces
基于等离子体超表面增强的实时振动光谱的药物发现和个性化医疗表型测定
- 批准号:
10025960 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Cellular Mechanisms of Antidepressant Drug Actions in Neuropathic Pain Models
神经病理性疼痛模型中抗抑郁药物作用的细胞机制
- 批准号:
10434903 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Cellular mechanisms of antidepressant drug actions in neuropathic pain models
神经病理性疼痛模型中抗抑郁药物作用的细胞机制
- 批准号:
10542571 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Cellular mechanisms of antidepressant drug actions in neuropathic pain models
神经病理性疼痛模型中抗抑郁药物作用的细胞机制
- 批准号:
10532060 - 财政年份:2019
- 资助金额:
-- - 项目类别: