Problems in Equivariant Algebraic Geometry
等变代数几何问题
基本信息
- 批准号:0101543
- 负责人:
- 金额:$ 6.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-10-15 至 2004-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of this project is to use equivariant methods to studyproblems concerning algebraic varieties with group actions. Partof this project involves moment graphs of varieties with torusactions. For a variety on which a torus acts with finitely manyfixed points and curves, one can define a combinatorial objectcalled a moment graph. There has been much recent progress incomputing topological invariants, such as cohomology orintersection homology, in terms of the moment graph. Theinvestigator proposes to extend this to K-theory. Schubertvarieties are among the most important varieties with this type oftorus action; the investigator plans to continue work with BrianBoe on a conjecture that would simplify determining if a point ina Schubert variety is rationally smooth. Moreover, he plans toextend some facts known only for Schubert varieties to the moregeneral setting of varieties with this type of torus action. Inaddition, the investigator plans to use equivariant methods tostudy certain interesting varieties: he plans to calculateChern-Schwartz-MacPherson classes of degeneracy loci, and tocalculate interesting invariants (degrees, push-forward measures)of nilpotent adjoint orbits of reductive Lie groups.This project is in the area of mathematics referred to as"algebraic geometry." Algebraic geometry studies geometricobjects by describing them as solutions to polynomial equations-- such objects are called "algebraic varieties." Fortunately,although algebraic varieties can be very complicated, many ofthem have a great deal of symmetry. Mathematicians have beenintensely investigating such varieties with extra symmetry forseveral reasons: The presence of such extra symmetry makesthese varieties easier to study, so that these varieties arevaluable test cases in developing methods to investigate allvarieties. Moreover, varieties with extra symmetry are of greatinterest in their own right: they play important roles invarious areas of mathematics, including number theory,combinatorics, and representation theory. There has beenconsiderable recent progress in developing techniques tounderstand these kinds of varieties; this project is aboutextending these techniques, and using them to study particularclasses of varieties.
本课题的目的是利用等变方法研究具有群作用的代数簇的问题。 该项目的一部分涉及具有环面作用的品种的矩图。 对于一个簇,其上的环面有许多不动点和曲线,人们可以定义一个组合对象,称为矩图。 利用矩图计算拓扑不变量,如上同调、交同调等,近年来取得了很大的进展。 研究者建议将其扩展到K理论。 舒伯特品种是其中最重要的品种与这种类型oftorus行动;调查计划继续工作与布赖恩波的猜想,将简化确定一个点在舒伯特品种是合理的顺利。 此外,他还计划将一些只为舒伯特簇所知的事实推广到具有这种环面作用的更一般的簇的情况。 此外,研究人员计划使用等变方法来研究某些有趣的变种:他计划计算退化轨迹的Chern-Schwartz-MacPherson类,并计算约化李群的幂零伴随轨道的有趣不变量(度,推进测度)。代数几何通过将几何对象描述为多项式方程的解来研究它们--这种对象被称为“代数簇“。幸运的是,虽然代数簇可能非常复杂,但它们中的许多都具有很强的对称性。 数学家们一直在研究具有额外对称性的变种,原因有几个:这种额外对称性的存在使这些变种更容易研究,因此这些变种在开发研究所有变种的方法时是有价值的测试案例。此外,具有超对称性的变体本身就具有很大的意义:它们在数学的各个领域,包括数论、组合学和表示论,都扮演着重要的角色。最近在发展了解这些品种的技术方面取得了相当大的进展;本项目是关于扩展这些技术,并利用它们来研究特定类别的品种。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Graham其他文献
Leontovich boundary condition and associated surface waves
莱昂托维奇边界条件和相关的表面波
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
K. Cherednichenko;William Graham - 通讯作者:
William Graham
Tangent spaces and emT/em-invariant curves of Schubert varieties
舒伯特簇的切空间和 emT/em 不变曲线
- DOI:
10.1016/j.aim.2024.109626 - 发表时间:
2024-05-01 - 期刊:
- 影响因子:1.500
- 作者:
William Graham;Victor Kreiman - 通讯作者:
Victor Kreiman
Estimates of resource use in the public-sector health-care system and the effect of strengthening health-care services in Malawi during 2015–19: a modelling study (emThanzi La Onse/em)
2015 年至 2019 年期间马拉维公共部门医疗保健系统资源使用估计和加强医疗保健服务的效果:一项建模研究(emThanzi La Onse/em)
- DOI:
10.1016/s2214-109x(24)00413-3 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:18.000
- 作者:
Timothy B Hallett;Tara D Mangal;Asif U Tamuri;Nimalan Arinaminpathy;Valentina Cambiano;Martin Chalkley;Joseph H Collins;Jonathan Cooper;Matthew S Gillman;Mosè Giordano;Matthew M Graham;William Graham;Iwona Hawryluk;Eva Janoušková;Britta L Jewell;Ines Li Lin;Robert Manning Smith;Gerald Manthalu;Emmanuel Mnjowe;Sakshi Mohan;Andrew N Phillips - 通讯作者:
Andrew N Phillips
A replicating RNA vaccine confers protection against Crimean-Congo hemorrhagic fever in cynomolgus macaques
一种复制型 RNA 疫苗赋予食蟹猕猴对克里米亚-刚果出血热的保护作用
- DOI:
10.1016/j.ebiom.2025.105698 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:10.800
- 作者:
David W. Hawman;Shanna Leventhal;Kimberly Meade-White;William Graham;Karen Gaffney;Amit Khandhar;Justin Murray;Jessy Prado-Smith;Carl Shaia;Greg Saturday;Henry Buda;Lenny Moise;Jesse Erasmus;Heinz Feldmann - 通讯作者:
Heinz Feldmann
UTILITY OF INTRAPROCEDURAL EQUILIBRIUM RADIONUCLIDE ANGIOGRAM TO EVALUATE LEFT VENTRICULAR FUNCTION AND SYNCHRONY DURING CARDIAC RESYNCHRONIZATION THERAPY
- DOI:
10.1016/s0735-1097(10)60842-x - 发表时间:
2010-03-09 - 期刊:
- 影响因子:
- 作者:
Nitish Badhwar;Deanna L. Green;William Graham;Nancy Wyatt;Teresa DeMarco;J.W. O’Connell;Elias H. Botvinick - 通讯作者:
Elias H. Botvinick
William Graham的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Graham', 18)}}的其他基金
ATD: Improving Analysis of Microbial Mixtures through Sparse Reconstruction Algorithms and Statistical Inference
ATD:通过稀疏重建算法和统计推断改进微生物混合物的分析
- 批准号:
1418744 - 财政年份:2013
- 资助金额:
$ 6.41万 - 项目类别:
Standard Grant
RAPID: Resolving higher trophic-level change within the northern Gulf of Mexico ecosystem as a consequence of the Deepwater Horizon oil spill
RAPID:解决因深水地平线漏油事件导致墨西哥湾北部生态系统内营养级更高的变化
- 批准号:
1043413 - 财政年份:2010
- 资助金额:
$ 6.41万 - 项目类别:
Standard Grant
FSML: Expansion of Research and Education Infrastructure within Dauphin Island Sea Lab's Marine Science Hall
FSML:扩建多芬岛海洋实验室海洋科学馆内的研究和教育基础设施
- 批准号:
0434870 - 财政年份:2005
- 资助金额:
$ 6.41万 - 项目类别:
Standard Grant
Group actions and vector bundles in algebraic geometry
代数几何中的群作用和向量丛
- 批准号:
0403838 - 财政年份:2004
- 资助金额:
$ 6.41万 - 项目类别:
Continuing Grant
International: Developing an Adriatic Summer Institute for Marine Environmental Complexity
国际:针对海洋环境复杂性建立亚得里亚海夏季研究所
- 批准号:
0425311 - 财政年份:2004
- 资助金额:
$ 6.41万 - 项目类别:
Standard Grant
Equivariant Methods in Algebraic Geometry
代数几何中的等变方法
- 批准号:
9870088 - 财政年份:1998
- 资助金额:
$ 6.41万 - 项目类别:
Standard Grant
Energetic Consequences of Feeding in a Patchy Environment: Possible Limitations to Jellyfish Production in Coastal Ecosystems
在不完整的环境中进食的能量后果:沿海生态系统中水母生产的可能限制
- 批准号:
9733441 - 财政年份:1998
- 资助金额:
$ 6.41万 - 项目类别:
Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
- 批准号:
9206250 - 财政年份:1992
- 资助金额:
$ 6.41万 - 项目类别:
Fellowship Award
Geometric and Electronic Structure and Vibrational Properties of Metal-Semiconductor Interface Systems
金属-半导体界面系统的几何和电子结构以及振动特性
- 批准号:
9120398 - 财政年份:1992
- 资助金额:
$ 6.41万 - 项目类别:
Continuing grant
Travel Support Estuarine Research Federation Meeting, 1992
旅行支持河口研究联合会会议,1992 年
- 批准号:
9216276 - 财政年份:1992
- 资助金额:
$ 6.41万 - 项目类别:
Interagency Agreement
相似海外基金
Equivariant symplectic and algebraic geometry of flag and spherical varieties
旗形簇和球簇的等变辛几何和代数几何
- 批准号:
RGPIN-2019-06567 - 财政年份:2022
- 资助金额:
$ 6.41万 - 项目类别:
Discovery Grants Program - Individual
Equivariant Symplectic and Algebraic Geometry
等变辛和代数几何
- 批准号:
CRC-2018-00218 - 财政年份:2022
- 资助金额:
$ 6.41万 - 项目类别:
Canada Research Chairs
Collaborative Research: Algebraic K-Theory, Arithmetic, and Equivariant Stable Homotopy Theory
合作研究:代数K理论、算术和等变稳定同伦理论
- 批准号:
2104348 - 财政年份:2021
- 资助金额:
$ 6.41万 - 项目类别:
Standard Grant
Collaborative Research: Algebraic K-Theory, Arithmetic, and Equivariant Stable Homotopy Theory
合作研究:代数K理论、算术和等变稳定同伦理论
- 批准号:
2104420 - 财政年份:2021
- 资助金额:
$ 6.41万 - 项目类别:
Standard Grant
Algebraic Structures in Equivariant Homotopy Theory and K Theory
等变同伦理论和K理论中的代数结构
- 批准号:
2104300 - 财政年份:2021
- 资助金额:
$ 6.41万 - 项目类别:
Standard Grant
Equivariant Symplectic And Algebraic Geometry
等变辛和代数几何
- 批准号:
CRC-2018-00218 - 财政年份:2021
- 资助金额:
$ 6.41万 - 项目类别:
Canada Research Chairs
Equivariant symplectic and algebraic geometry of flag and spherical varieties
旗形簇和球簇的等变辛几何和代数几何
- 批准号:
RGPIN-2019-06567 - 财政年份:2021
- 资助金额:
$ 6.41万 - 项目类别:
Discovery Grants Program - Individual
Algebraic K-Theory, Topological Hochschild Homology, and Equivariant Homotopy Theory
代数 K 理论、拓扑 Hochschild 同调和等变同伦理论
- 批准号:
2104233 - 财政年份:2021
- 资助金额:
$ 6.41万 - 项目类别:
Continuing Grant
Equivariant Symplectic and Algebraic Geometry
等变辛和代数几何
- 批准号:
CRC-2018-00218 - 财政年份:2020
- 资助金额:
$ 6.41万 - 项目类别:
Canada Research Chairs
CAREER: Equivariant and Infinite-Dimensional Combinatorial Algebraic Geometry
职业:等变和无限维组合代数几何
- 批准号:
1945212 - 财政年份:2020
- 资助金额:
$ 6.41万 - 项目类别:
Continuing Grant