NER: Molecule Diffraction and Interferometry Using NanoStructures
NER:使用纳米结构的分子衍射和干涉测量
基本信息
- 批准号:0404350
- 负责人:
- 金额:$ 7.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-08-01 至 2005-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Controlling the quantum coherence of strongly interacting particles is one of the grand challenges in quantum engineering. In this context, polar molecules and electrons are strongly interacting compared to atoms and neutrons, because of their electric dipole moment and electric charge. Coherent diffraction of these particles from nano-scale structures will allow us to measure any perturbations to their quantum state directly by observing the phase and contrast in their de Broglie wave interference fringes.Furthermore, diffraction and interference of polar molecules represents research at the interface between nanotechnology, condensed matter physics, and atomic physics. Improved gratings with a 100-nanometer period have enabled several atomic physics and atom-surface studies. The purpose of this NER proposal is to further develop nanostructure grating technology to study polar molecules, clusters of atoms, and also electrons. This research is exploratory because charged particles or even molecules with large dipole moments are prone to decoherence. Interactions with the environment, such as scattering molecules from a background gas, or de-phasing due to stray electric fields, will reduce the contrast of interference patterns. Even interactions with the nanostructure gratings themselves may limit the phase coherence of molecule waves. This research will prove the feasibility of matter wave interferometry with polar molecules and electrons using nanotechnology gratings.Once proven, several experiments are possible with molecule and electron interferometers. One application of a molecular interferometer is the measurement of van der Waals interactions between isolated molecules and surfaces a few nanometers away. Another application is to measure the tensor components of polarizability for molecules and clusters. Inertial sensing with molecules and holography with low energy electrons will also be studied. Broader ImpactMolecular interferometers are good candidates for ultra precise accelerometers and gyroscopes. Because of their short wavelengths, molecular interferometers will provide sensitivity to rotation rates smaller than 1E-9 radians per second given one second of integration time. Gyroscopes with this sensitivity will be of interest to geophysics as well as fundamental physics studies.Electron diffraction from nanofabricated gratings could revolutionize electron holography. Because the nanostructures work as transmission optics with actual slots on the nanoscale, these gratings will enable electron holography with two orders of magnitude smaller electron energy than presently is possible.Education will be a major result of this proposed work. Currently three graduate students, and four undergraduates work on atom optics with the PI. Two students have the Optical Sciences Center as their home department, so we are building strong ties between the Physics Department and Optical Sciences Center at the University of Arizona. Our laboratory gives approximately 30 tours a year to groups of high school students, engineers, undergraduate classes, graduate students and visitors. The P.I. also teaches physics classes each semester and gives talks on quantum optics and new developments in matter wave interferometry. This outreach is combined with web publications and journal articles to communicate results.
控制强相互作用粒子的量子相干性是量子工程中的重大挑战之一。在这种情况下,由于它们的电偶极矩和电荷,极性分子和电子与原子和中子相比具有强烈的相互作用。这些粒子从纳米尺度结构的相干衍射将允许我们通过观察它们的德布罗意波干涉条纹的相位和对比度来直接测量它们的量子态的任何扰动。此外,极性分子的衍射和干涉代表了纳米技术、凝聚态物理和原子物理之间的界面研究。改进的100纳米周期光栅已经使一些原子物理学和原子表面研究成为可能。本提案的目的是进一步发展纳米结构光栅技术,以研究极性分子、原子团簇和电子。这项研究是探索性的,因为带电粒子甚至具有大偶极矩的分子都容易退相干。与环境的相互作用,例如来自背景气体的分子散射,或由于杂散电场而导致的失相,将降低干涉图案的对比度。甚至与纳米结构光栅本身的相互作用也可能限制分子波的相相干性。本研究将证明利用纳米光栅对极性分子和电子进行物质波干涉测量的可行性。一旦得到证实,就可以用分子和电子干涉仪进行一些实验。分子干涉仪的一个应用是测量孤立分子和几纳米外表面之间的范德华相互作用。另一个应用是测量分子和团簇偏振性的张量分量。分子惯性传感和低能电子全息术也将被研究。更广泛的影响分子干涉仪是超精密加速度计和陀螺仪的理想选择。由于波长短,分子干涉仪在给定一秒的积分时间内,对小于每秒1E-9弧度的旋转速率提供灵敏度。具有这种灵敏度的陀螺仪将引起地球物理学和基础物理学研究的兴趣。来自纳米光栅的电子衍射可以彻底改变电子全息术。由于纳米结构在纳米尺度上具有实际的槽,因此这些光栅将使电子全息术的电子能量比目前可能的小两个数量级。教育将是这项拟议工作的主要成果。目前有三名研究生和四名本科生与PI一起研究原子光学。有两名学生将光学科学中心作为他们的家庭部门,因此我们正在建立亚利桑那大学物理系和光学科学中心之间的牢固联系。我们的实验室每年向高中生、工程师、本科生、研究生和游客团体提供大约30次参观。私家侦探每学期也教授物理课程,并就量子光学和物质波干涉测量的新发展发表演讲。这种拓展与网络出版物和期刊文章相结合,以交流结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Cronin其他文献
Atom interferometry on a chip
芯片上的原子干涉测量法
- DOI:
10.1038/nphys426 - 发表时间:
2006-10-01 - 期刊:
- 影响因子:18.400
- 作者:
Alexander Cronin - 通讯作者:
Alexander Cronin
Alexander Cronin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Cronin', 18)}}的其他基金
EAGER: Solar Aware Smart Grid at Biosphere 2
EAGER:生物圈 2 号太阳能感知智能电网
- 批准号:
1138418 - 财政年份:2012
- 资助金额:
$ 7.21万 - 项目类别:
Standard Grant
New Applications for Atom Interferometry with Material Nano-Gratings
材料纳米光栅原子干涉测量的新应用
- 批准号:
0969348 - 财政年份:2010
- 资助金额:
$ 7.21万 - 项目类别:
Continuing Grant
New Applications for Atom and Electron Interferometry using Material Gratings
使用材料光栅的原子和电子干涉测量的新应用
- 批准号:
0653623 - 财政年份:2007
- 资助金额:
$ 7.21万 - 项目类别:
Continuing Grant
IMR: Collaborative Research: Acquisition of an Atom Interferometer/Diffractometer for Materials Research and Education
IMR:协作研究:购买原子干涉仪/衍射仪用于材料研究和教育
- 批准号:
0526954 - 财政年份:2005
- 资助金额:
$ 7.21万 - 项目类别:
Standard Grant
New Applications for Atom Interferometry using Material Gratings
使用材料光栅的原子干涉测量的新应用
- 批准号:
0354947 - 财政年份:2004
- 资助金额:
$ 7.21万 - 项目类别:
Continuing Grant
相似国自然基金
D-A类共轭聚合物晶界内部tie molecule构象调控
- 批准号:51573185
- 批准年份:2015
- 资助金额:70.0 万元
- 项目类别:面上项目
耦合可积系统及其molecule解的研究
- 批准号:11026119
- 批准年份:2010
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Acquisition of a Single Crystal X-ray Diffraction System for Macromolecular and Small Molecule Crytsallography
用于大分子和小分子晶体学的单晶 X 射线衍射系统的获取
- 批准号:
10177052 - 财政年份:2021
- 资助金额:
$ 7.21万 - 项目类别:
Probing High-Throughput Drug Molecule Crystallisation Methods via Electron Diffraction
通过电子衍射探索高通量药物分子结晶方法
- 批准号:
10018170 - 财政年份:2021
- 资助金额:
$ 7.21万 - 项目类别:
Collaborative R&D
Determination of atomic charge in protein molecule by electron diffraction
通过电子衍射测定蛋白质分子中的原子电荷
- 批准号:
20K15764 - 财政年份:2020
- 资助金额:
$ 7.21万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Core Facility Gas Electron Diffraction and Small Molecule Structures Centre, Bielefeld (GED@BI)
核心设施气体电子衍射和小分子结构中心,比勒费尔德 (GED@BI)
- 批准号:
324757882 - 财政年份:2017
- 资助金额:
$ 7.21万 - 项目类别:
Core Facilities
Gas Electron Diffraction and Small Molecule Structures Centre, Bielefeld (GED@BI)
气体电子衍射和小分子结构中心,比勒费尔德 (GED@BI)
- 批准号:
233477935 - 财政年份:2013
- 资助金额:
$ 7.21万 - 项目类别:
Core Facilities
Theory of electronic processes in Molecules Subject to Intense X-ray Radiation: Towards Single-Molecule X-ray Diffraction Spectroscopy
强 X 射线辐射下分子中的电子过程理论:走向单分子 X 射线衍射光谱
- 批准号:
EP/H003657/1 - 财政年份:2010
- 资助金额:
$ 7.21万 - 项目类别:
Fellowship
The South Australian Facility for Small and Large Molecule X-Ray Diffraction Structure Determination
南澳大利亚小分子和大分子 X 射线衍射结构测定设施
- 批准号:
LE0989336 - 财政年份:2009
- 资助金额:
$ 7.21万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Biomolecular structures from few photons single molecule x-ray diffraction data (B04)
来自少数光子单分子 X 射线衍射数据的生物分子结构 (B04)
- 批准号:
50499816 - 财政年份:2007
- 资助金额:
$ 7.21万 - 项目类别:
Collaborative Research Centres
U.S.-France Cooperative Research: Diffraction Studies of Molecule-based Magnetic Materials
美法合作研究:分子磁性材料的衍射研究
- 批准号:
9513024 - 财政年份:1996
- 资助金额:
$ 7.21万 - 项目类别:
Standard Grant