Theory of electronic processes in Molecules Subject to Intense X-ray Radiation: Towards Single-Molecule X-ray Diffraction Spectroscopy

强 X 射线辐射下分子中的电子过程理论:走向单分子 X 射线衍射光谱

基本信息

  • 批准号:
    EP/H003657/1
  • 负责人:
  • 金额:
    $ 90.59万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2010
  • 资助国家:
    英国
  • 起止时间:
    2010 至 无数据
  • 项目状态:
    已结题

项目摘要

Understanding of mechanisms guiding the wide variety of biochemical processes in living organisms requires determination of structure of the biomolecules (for example, proteins) taking part in these processes. Indeed, vast scientific resources have been put into trying to unveil protein structure. The spectacular success that has been achieved along this path has contributed immensely to our ability to fight diseases by designing new drugs. Throughout the last century, this success has been marked by numerous Nobel Prizes in Physics and Chemistry. In spite of the remarkable achievements of the present-day methods, the structures of a vast bulk of biomolecules still remain a mystery. The reason is that the prerequisite for application of the main existing technique, called X-ray diffraction, is crystallization of the biomolecules under study. It turns out that obtaining a crystal, that is a geometrically ordered solid structure, out of protein solution is often an extremely difficult task. To overcome this difficulty, some researchers suggested to analyse proteins by X-ray diffraction in gas phase rather than in a crystal. This would certainly require application of much more intense X-ray radiation than the one available today since this way one would try to obtain a picture of a single biomolecule. Fortunately though, new powerful X-ray sources called X-ray free electron lasers are now being built at a number of facilities throughout the world. It has been proposed that the X-ray radiation generated by these new sources will be strong enough to give a picture of a single protein molecule in a single shot. The principal problem with such an approach is that the very same radiation that creates an image of a target molecule can also destroy the target. The fate of the new method of the single-molecule X-ray diffraction hangs on the delicate balance between these two basic consequences of X-ray-molecule interaction: diffraction of the radiation versus decomposition of the molecule. The central problem is to design such a radiation pulse that is strong enough and long enough to provide the diffraction picture of sufficient quality, but still short enough not to cause the molecule to disintegrate during the action of the pulse. Design of such pulses is possible only if one is able to understand in detail all possible mechanisms of molecular decomposition and eventually to model it in a computer simulation. The central goal of the present proposal is exactly this: theoretical study of the electronic processes that lead to disintegration of a molecule under the action of intense X-ray and computer simulation of this process based on the detailed understanding of the underlying physical mechanisms. These mechanisms include ionisation of molecules by the X-ray radiation and various types of rearrangements of the remaining electrons following the ionisation events. Often, such rearrangements lead to a delayed emission of more electrons and the magnitudes of these delays determine eventually the way in which the molecule decomposes and the time scale of the decomposition process. Thus, I plan to invest a considerable effort in trying to predict the time scales of the various electronic rearrangement processes as well as to determine the main factors that affect these time scales. The results of the proposed theoretical work will guide the application of the novel X-ray radiation sources towards towards determination of molecular structure by single-molecule X-ray diffraction.
要理解指导生物体中各种生化过程的机制,就需要确定参与这些过程的生物分子(例如蛋白质)的结构。事实上,大量的科学资源已经投入到试图揭开蛋白质结构的面纱中。沿着这条道路所取得的巨大成功极大地提高了我们通过设计新药来防治疾病的能力。在整个上个世纪,这一成功的标志是无数的诺贝尔物理学奖和化学奖。尽管现代方法取得了显著的成就,但大量生物分子的结构仍然是一个谜。原因是,应用现有的主要技术(称为X射线衍射)的先决条件是所研究的生物分子的结晶。事实证明,从蛋白质溶液中获得晶体,即几何有序的固体结构,通常是一项极其困难的任务。为了克服这一困难,一些研究人员建议在气相而不是晶体中通过X射线衍射分析蛋白质。这当然需要应用比今天可用的更强的X射线辐射,因为这种方式将试图获得单个生物分子的图像。幸运的是,被称为X射线自由电子激光器的新的强大X射线源现在正在世界各地的许多设施中建造。有人提出,这些新光源产生的X射线辐射将足够强,可以在一次拍摄中给出单个蛋白质分子的图像。这种方法的主要问题是,产生目标分子图像的相同辐射也可以破坏目标。单分子X射线衍射新方法的命运取决于X射线-分子相互作用的两个基本结果之间的微妙平衡:辐射的衍射与分子的分解。核心问题是设计这样一个辐射脉冲,它足够强,足够长,以提供足够质量的衍射图像,但仍然足够短,不会导致分子在脉冲作用期间分裂。只有当人们能够详细了解分子分解的所有可能机制并最终在计算机模拟中对其进行建模时,才有可能设计这种脉冲。本提案的中心目标正是:在强X射线作用下导致分子解体的电子过程的理论研究,以及基于对潜在物理机制的详细理解的这一过程的计算机模拟。这些机制包括通过X射线辐射的分子电离和电离事件之后剩余电子的各种类型的重排。通常,这种重排导致更多电子的延迟发射,并且这些延迟的幅度最终决定了分子分解的方式和分解过程的时间尺度。因此,我计划投入相当大的努力,试图预测各种电子重排过程的时间尺度,以及确定影响这些时间尺度的主要因素。所提出的理论工作的结果将指导新的X射线辐射源的应用对确定分子结构的单分子X射线衍射。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Interatomic electronic decay processes in singly and multiply ionized clusters
K-shell Auger lifetime variation in doubly ionized Ne and first row hydrides.
双电离氖和第一行氢化物的 K 壳俄歇寿命变化。
Rates of exponential decay in systems of discrete energy levels by Stieltjes imaging.
Stieltjes 成像在离散能级系统中的指数衰减率。
Ab initio interatomic decay widths of excited states by applying Stieltjes imaging to Lanczos pseudospectra.
通过将 Stieltjes 成像应用于 Lanczos 赝谱,从头计算激发态的原子间衰变宽度。
Reconstruction of correlation-driven electron-hole dynamics by high-harmonic-generation spectroscopy
通过高次谐波产生谱重建相关驱动的电子空穴动力学
  • DOI:
    10.1103/physreva.90.033426
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Leeuwenburgh J
  • 通讯作者:
    Leeuwenburgh J
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vitali Averbukh其他文献

Vitali Averbukh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于循证医学本体论的临床元数据语言研究
  • 批准号:
    30972549
  • 批准年份:
    2009
  • 资助金额:
    24.0 万元
  • 项目类别:
    面上项目
双原子分子高激发振转能级的精确研究
  • 批准号:
    10774105
  • 批准年份:
    2007
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目
基于安全多方计算的抗强制电子选举协议研究
  • 批准号:
    60773114
  • 批准年份:
    2007
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目

相似海外基金

CDS&E: Bridging electronic structure theory and dynamics with applications to nonadiabatic processes
CDS
  • 批准号:
    1566246
  • 财政年份:
    2016
  • 资助金额:
    $ 90.59万
  • 项目类别:
    Standard Grant
Theory and its applications based on density matrix renormalization group for multiple-electronic-state chemical processes
基于密度矩阵重整化群的多电子态化学过程理论及其应用
  • 批准号:
    25288013
  • 财政年份:
    2013
  • 资助金额:
    $ 90.59万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of new electronic structure theory applicable to large molecular systems and complex chemical processes
发展适用于大分子系统和复杂化学过程的新电子结构理论
  • 批准号:
    410081-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 90.59万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Development of new electronic structure theory applicable to large molecular systems and complex chemical processes
发展适用于大分子系统和复杂化学过程的新电子结构理论
  • 批准号:
    410081-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 90.59万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Interfacial photo-molecular processes by open-system electronic structure theory
开放系统电子结构理论的界面光分子过程
  • 批准号:
    23750028
  • 财政年份:
    2011
  • 资助金额:
    $ 90.59万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Theory and simulations of electronic processes in organic semiconductors
有机半导体电子过程的理论和模拟
  • 批准号:
    1011894
  • 财政年份:
    2010
  • 资助金额:
    $ 90.59万
  • 项目类别:
    Continuing Grant
Development of New Method Based on the Density Functional Theory and Application to Nonequilibrium Electronic Processes
基于密度泛函理论的新方法的发展及其在非平衡电子过程中的应用
  • 批准号:
    15607018
  • 财政年份:
    2003
  • 资助金额:
    $ 90.59万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Theory of Spin-dependent Electronic Structure, Transport Processes and Excitonic Properties in Low-dimensional Semiconductor Structures (C 01)
低维半导体结构中自旋相关电子结构、输运过程和激子性质理论(C 01)
  • 批准号:
    5409806
  • 财政年份:
    2003
  • 资助金额:
    $ 90.59万
  • 项目类别:
    Collaborative Research Centres
Theory of atomic processes induced by electronic excitation in insulating materials
绝缘材料中电子激发诱发的原子过程理论
  • 批准号:
    5929-2000
  • 财政年份:
    2001
  • 资助金额:
    $ 90.59万
  • 项目类别:
    Discovery Grants Program - Individual
Theory of atomic processes induced by electronic excitation in insulating materials
绝缘材料中电子激发诱发的原子过程理论
  • 批准号:
    5929-2000
  • 财政年份:
    2000
  • 资助金额:
    $ 90.59万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了