Studies of Knots, Links, and Other Spatial Configurations
结、链接和其他空间配置的研究
基本信息
- 批准号:0404511
- 负责人:
- 金额:$ 12.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-08-01 至 2007-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The subject of this proposal is to study the topology, geometry,combinatorics, and statistics of such spatial configurations as knots,links, braids, and polygonal simple spatial curves. Five specific topicsand related research projects are proposed. They range from the knotclassfication problem, a folding problem of polygonal simple curves in the3-space, a possible statistic pattern of the roots of the Jonespolynomial, some problems about representations of braid groups, and thestudy of higher order knot signatures. Some of the problems addressed inthis proposal are major open problems in the field of low dimensionaltopology. The folding problem of polygonal simple spatial curves addressedin this proposal aims at showing that there is essentially no topologicalobstruction for the protein folding problem in molecular biology.The phenomena of knotting and braiding are fundamental in 3-dimensionalspatial structure. A mathematical description and understanding of suchphenomena is essential to our knowledge of the natural world, and is themajor goal of the study of low dimensional topology. The discrete methodsof analyzing 3-dimensional spatial structures developed in the study oflow dimensional topology are proven to be significant to many otherbranches of science and applied research, particularly physics, molecularbiology, and computer graphics. In this proposal, a major effort will bespent on solving an abstract version of the protein folding problem, whichis a central problem in modern molecular biology, using these methods.These methods are also fundamental in the development of a student'sability to visualize and analyze 3-dimensional configurations.
本提案的主题是研究诸如结、链、辫和多边形简单空间曲线等空间构型的拓扑、几何、组合学和统计学。提出了五个具体课题和相关研究项目。它们的范围从结分类问题,三维空间中多边形简单曲线的折叠问题,琼斯多项式根的可能统计模式,关于辫群表示的一些问题,以及高阶结签名的研究。本文所讨论的一些问题是低维拓扑学领域的主要开放性问题。本文所讨论的多边形简单空间曲线的折叠问题旨在表明分子生物学中蛋白质折叠问题基本上不存在拓扑障碍。打结和编织现象是三维空间结构的基本现象。对这种现象的数学描述和理解对于我们了解自然世界至关重要,也是低维拓扑研究的主要目标。在低维拓扑研究中发展起来的分析三维空间结构的离散方法已被证明对许多其他科学和应用研究分支,特别是物理学、分子生物学和计算机图形学具有重要意义。在这个提议中,主要的努力将花在解决蛋白质折叠问题的抽象版本上,这是现代分子生物学的核心问题,使用这些方法。这些方法也是培养学生可视化和分析三维结构能力的基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiao-Song Lin其他文献
Xiao-Song Lin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiao-Song Lin', 18)}}的其他基金
Research in Knots, Links and 3-Manifolds
结、链接和 3 流形的研究
- 批准号:
0102231 - 财政年份:2001
- 资助金额:
$ 12.18万 - 项目类别:
Standard Grant
Mathematical Sciences: Knot Theory: New Invariants and TheirTopology
数学科学:纽结理论:新不变量及其拓扑
- 批准号:
9796130 - 财政年份:1997
- 资助金额:
$ 12.18万 - 项目类别:
Standard Grant
Mathematical Sciences: Knot Theory: New Invariants and TheirTopology
数学科学:纽结理论:新不变量及其拓扑
- 批准号:
9201091 - 财政年份:1992
- 资助金额:
$ 12.18万 - 项目类别:
Standard Grant
Mathematical Sciences: Knot Invariants and Representation Varieties
数学科学:结不变量和表示簇
- 批准号:
9004017 - 财政年份:1990
- 资助金额:
$ 12.18万 - 项目类别:
Standard Grant
相似海外基金
Study on knots, links and spatial graphs using pseudo diagrams
使用伪图研究结、链接和空间图
- 批准号:
26800039 - 财政年份:2014
- 资助金额:
$ 12.18万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
CAREER: Hyperbolic geometry and knots and links
职业:双曲几何以及结和链接
- 批准号:
1252687 - 财政年份:2013
- 资助金额:
$ 12.18万 - 项目类别:
Continuing Grant
Exploration of knots, links, and braids
探索结、链接和辫子
- 批准号:
448979-2013 - 财政年份:2013
- 资助金额:
$ 12.18万 - 项目类别:
University Undergraduate Student Research Awards
Geometry on concordance invariants of knots and links
结和链接的一致性不变量的几何
- 批准号:
24540074 - 财政年份:2012
- 资助金额:
$ 12.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Exploration of knots, links, and braids
探索结、链接和辫子
- 批准号:
400494-2010 - 财政年份:2010
- 资助金额:
$ 12.18万 - 项目类别:
University Undergraduate Student Research Awards
Knots and links in 3 sphere
3 个球体中的结和链接
- 批准号:
4034-2005 - 财政年份:2009
- 资助金额:
$ 12.18万 - 项目类别:
Discovery Grants Program - Individual
Knots and links in 3 sphere
3 个球体中的结和链接
- 批准号:
4034-2005 - 财政年份:2008
- 资助金额:
$ 12.18万 - 项目类别:
Discovery Grants Program - Individual
Geometry and Topology of Knots and Links
结和链接的几何和拓扑
- 批准号:
0704359 - 财政年份:2007
- 资助金额:
$ 12.18万 - 项目类别:
Standard Grant
Collaborative Research: Exploring the Space of Large Knots and Links
合作研究:探索大结和链接的空间
- 批准号:
0712958 - 财政年份:2007
- 资助金额:
$ 12.18万 - 项目类别:
Standard Grant
Knots and links in 3 sphere
3 个球体中的结和链接
- 批准号:
4034-2005 - 财政年份:2007
- 资助金额:
$ 12.18万 - 项目类别:
Discovery Grants Program - Individual