Geometry and Topology of Knots and Links
结和链接的几何和拓扑
基本信息
- 批准号:0704359
- 负责人:
- 金额:$ 9.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-08-01 至 2011-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
It has been known since the early 1980's that knot complements satisfy the geometrization conjecture. Thus the geometry of knot complements ought to be a useful tool in the study of knots. However, what is not known in general is how to relate diagrams of knots to their geometric structure, particularly hyperbolic knots. In the last few years, the PI has found bounds on certain geometric information of a knot complement based on a diagram, including bounds on cusp shapes and volumes for classes of knots. In this project, the PI will apply techniques in 3-manifold theory developed in the last few years to knot complements, to further our understanding of their geometric properties.A closed loop lying in space may be knotted or unknotted. In mathematics, such a loop is called a knot. One goal of knot theory is to determine, based on a snapshot of that knot (a diagram), whether it can be unknotted without breaking the loop. A method of studying knots is to consider not the knot itself, but the 3-dimensional space obtained by removing the knot from the 3-sphere, called the knot complement. The PI will use recent advances in the study of 3-dimensional spaces, or 3-manifold theory, to study knots. This research has applications to such areas as string theory and the knotting of DNA.
自20世纪80年代初以来,人们就知道纽结补满足几何化猜想。 因此,纽结补数的几何学应该是研究纽结的一个有用的工具。 然而,一般不知道的是如何将纽结的图与它们的几何结构联系起来,特别是双曲纽结。 在过去的几年里,PI已经发现了基于图的结补的某些几何信息的界限,包括结类的尖点形状和体积的界限。在这个项目中,PI将把过去几年发展起来的三维流形理论中的技术应用于纽结补,以进一步理解它们的几何性质。 在数学中,这样的环被称为结。 结理论的一个目标是根据结的快照(一个图)来确定它是否可以在不破坏环的情况下解开。 研究纽结的一种方法是不考虑纽结本身,而是考虑从三维球面中移除纽结所获得的三维空间,称为纽结补。 PI将利用三维空间或三维流形理论研究的最新进展来研究结。 这项研究在弦理论和DNA打结等领域都有应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jessica Purcell其他文献
Are societies resilient? Challenges faced by social insects in a changing world
- DOI:
10.1007/s00040-018-0663-2 - 发表时间:
2018-10-01 - 期刊:
- 影响因子:1.500
- 作者:
Kaleigh Fisher;Mari West;Adriana M. Lomeli;S. Hollis Woodard;Jessica Purcell - 通讯作者:
Jessica Purcell
Supergenes in organismal and social development of insects: ideas and opportunities
- DOI:
10.1016/j.cois.2024.101303 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:
- 作者:
Jessica Purcell;Alan Brelsford - 通讯作者:
Alan Brelsford
Jessica Purcell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jessica Purcell', 18)}}的其他基金
CAREER: Integrating genetic and ecological drivers of a social phenotype: dynamics of a social polymorphism and supergene
职业:整合社会表型的遗传和生态驱动因素:社会多态性和超基因的动态
- 批准号:
1942252 - 财政年份:2020
- 资助金额:
$ 9.38万 - 项目类别:
Continuing Grant
SG: Understanding the genetic and behavioral basis of novel social phenotypes in damaging invasive wasps
SG:了解破坏性入侵黄蜂的新型社会表型的遗传和行为基础
- 批准号:
1655963 - 财政年份:2017
- 资助金额:
$ 9.38万 - 项目类别:
Standard Grant
CAREER: Hyperbolic geometry and knots and links
职业:双曲几何以及结和链接
- 批准号:
1252687 - 财政年份:2013
- 资助金额:
$ 9.38万 - 项目类别:
Continuing Grant
Collaborative research: Hyperbolic geometry of knots and 3-manifolds
合作研究:结和三流形的双曲几何
- 批准号:
1007437 - 财政年份:2010
- 资助金额:
$ 9.38万 - 项目类别:
Standard Grant
Moab Topology Conference; Moab, UT; May 2009
摩押拓扑会议;
- 批准号:
0932037 - 财政年份:2009
- 资助金额:
$ 9.38万 - 项目类别:
Standard Grant
相似海外基金
Connections between Algebra and Topology: Using algebraic number theory and TQFTs to study knots
代数与拓扑之间的联系:使用代数数论和 TQFT 研究纽结
- 批准号:
559329-2021 - 财政年份:2022
- 资助金额:
$ 9.38万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Connections between Algebra and Topology: Using algebraic number theory and TQFTs to study knots
代数与拓扑之间的联系:使用代数数论和 TQFT 研究纽结
- 批准号:
559329-2021 - 财政年份:2021
- 资助金额:
$ 9.38万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
RUI: Knots in Three-Dimensional Manifolds: Quantum Topology, Hyperbolic Geometry, and Applications
RUI:三维流形中的结:量子拓扑、双曲几何和应用
- 批准号:
1906323 - 财政年份:2019
- 资助金额:
$ 9.38万 - 项目类别:
Standard Grant
Quantum topology and invariants of knots and 3-manifolds related to gauge theory
量子拓扑以及与规范理论相关的结和三流形的不变量
- 批准号:
16K13754 - 财政年份:2016
- 资助金额:
$ 9.38万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
International Conference on Knots, Low-Dimensional Topology, and Applications
结、低维拓扑和应用国际会议
- 批准号:
1632551 - 财政年份:2016
- 资助金额:
$ 9.38万 - 项目类别:
Standard Grant
Quantum Topology of knots and 3-manifolds
结和三流形的量子拓扑
- 批准号:
16H02145 - 财政年份:2016
- 资助金额:
$ 9.38万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Spins and Knots: The Rise of Topology in F-Orbital Materials
自旋与结:F 轨道材料中拓扑的兴起
- 批准号:
1506547 - 财政年份:2015
- 资助金额:
$ 9.38万 - 项目类别:
Standard Grant
Knots and contact topology through holomorphic curves
通过全纯曲线的结和接触拓扑
- 批准号:
1406371 - 财政年份:2014
- 资助金额:
$ 9.38万 - 项目类别:
Continuing Grant
Conference on low-dimensional topology, knots, and orderable groups
低维拓扑、结和可有序群会议
- 批准号:
1305714 - 财政年份:2013
- 资助金额:
$ 9.38万 - 项目类别:
Standard Grant
Study on local moves of knots with application to polymer topology
结的局部移动研究及其在聚合物拓扑中的应用
- 批准号:
24540089 - 财政年份:2012
- 资助金额:
$ 9.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)