CAREER: Hyperbolic geometry and knots and links
职业:双曲几何以及结和链接
基本信息
- 批准号:1252687
- 负责人:
- 金额:$ 37.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-06-01 至 2016-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
It has been known since the early 1980s that knot and link complements decompose into pieces admitting a geometric structure, with the most common geometry being hyperbolic. However, the connection between hyperbolic geometry and other knot and link invariants is still not well understood. The investigator will use recent developments and techniques in 3-manifold geometry and topology to make connections between hyperbolic geometry and link invariants, focusing on problems in two areas. First, she will relate hyperbolic geometry to quantum invariants, in particular continuing her recent work to find connections between hyperbolic geometry and the colored Jones polynomial. Second, she will obtain bounds on hyperbolic quantities based on diagrammatical and topological invariants of knots and links, for example bounding volume and cusp volume, and finding isotopy classes of geodesics. As part of the educational portion of this work, she will organize two conferences on connections of hyperbolic geometry, and continue her work with undergraduate, graduate, and K-12 students.This project concerns the study of 3-dimensional spaces called 3-manifolds, which include the space of our universe (with three spatial dimensions). These spaces appear in physics, mechanics, microbiology, and chemistry, and so we wish to better understand their mathematical properties. One way to study 3-manifolds is to drill out tubes around circles from a 3-dimensional sphere, and then reattach the tubes in a different manner. The space of drilled tubes about circles is called a link complement, or knot complement if there is just one circle. In this way, knot and link complements are building blocks for 3-manifolds. The investigator will study the geometry of knot and link complements, with the hope of finding new results on the properties of broader classes of 3-manifolds. This project includes many provisions for training students. Much of the research will be carried out with the assistance of undergraduate and graduate students. In addition, as part of this project the investigator will run two research conferences, during which several graduate students and postdoctoral researchers will be invited to present their related work. Finally, the investigator will continue to run mathematical workshops for children throughout the school year.
人们从20世纪80年代初就知道,纽结和链接补语会分解成碎片,形成几何结构,其中最常见的几何图形是双曲线。然而,双曲几何与其他纽结和链接不变量之间的联系仍然没有被很好地理解。研究人员将利用三维流形几何和拓扑学的最新发展和技术来建立双曲几何和链接不变量之间的联系,重点关注两个领域的问题。首先,她将把双曲几何和量子不变量联系起来,特别是继续她最近的工作,寻找双曲几何和有色琼斯多项式之间的联系。其次,她将根据纽结和链环的图解和拓扑不变量,例如边界体积和尖点体积,以及寻找测地线的等规类,获得双曲线量的界限。作为这项工作的教育部分的一部分,她将组织两次关于双曲几何联系的会议,并继续她与本科生、研究生和K-12学生的工作。这个项目涉及被称为三维流形的三维空间的研究,其中包括我们宇宙的空间(具有三个空间维度)。这些空间出现在物理、力学、微生物学和化学中,因此我们希望更好地了解它们的数学性质。研究三维流形的一种方法是在三维球体的圆形周围钻出管,然后以不同的方式重新连接管。围绕圆钻出的管子的空间称为链节补,如果只有一个圆,则称为结补。在这种情况下,纽结和链补是3-流形的构建块。研究人员将研究纽结和链补的几何,希望在更广泛的3-流形类的性质上找到新的结果。这个项目包括了许多培训学生的条款。大部分研究将在本科生和研究生的帮助下进行。此外,作为该项目的一部分,研究人员将举办两次研究会议,期间将邀请几名研究生和博士后研究人员介绍他们的相关工作。最后,调查员将在整个学年继续为儿童举办数学讲习班。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jessica Purcell其他文献
Are societies resilient? Challenges faced by social insects in a changing world
- DOI:
10.1007/s00040-018-0663-2 - 发表时间:
2018-10-01 - 期刊:
- 影响因子:1.500
- 作者:
Kaleigh Fisher;Mari West;Adriana M. Lomeli;S. Hollis Woodard;Jessica Purcell - 通讯作者:
Jessica Purcell
Supergenes in organismal and social development of insects: ideas and opportunities
- DOI:
10.1016/j.cois.2024.101303 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:
- 作者:
Jessica Purcell;Alan Brelsford - 通讯作者:
Alan Brelsford
Jessica Purcell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jessica Purcell', 18)}}的其他基金
CAREER: Integrating genetic and ecological drivers of a social phenotype: dynamics of a social polymorphism and supergene
职业:整合社会表型的遗传和生态驱动因素:社会多态性和超基因的动态
- 批准号:
1942252 - 财政年份:2020
- 资助金额:
$ 37.32万 - 项目类别:
Continuing Grant
SG: Understanding the genetic and behavioral basis of novel social phenotypes in damaging invasive wasps
SG:了解破坏性入侵黄蜂的新型社会表型的遗传和行为基础
- 批准号:
1655963 - 财政年份:2017
- 资助金额:
$ 37.32万 - 项目类别:
Standard Grant
Collaborative research: Hyperbolic geometry of knots and 3-manifolds
合作研究:结和三流形的双曲几何
- 批准号:
1007437 - 财政年份:2010
- 资助金额:
$ 37.32万 - 项目类别:
Standard Grant
Moab Topology Conference; Moab, UT; May 2009
摩押拓扑会议;
- 批准号:
0932037 - 财政年份:2009
- 资助金额:
$ 37.32万 - 项目类别:
Standard Grant
Geometry and Topology of Knots and Links
结和链接的几何和拓扑
- 批准号:
0704359 - 财政年份:2007
- 资助金额:
$ 37.32万 - 项目类别:
Standard Grant
相似海外基金
Hyperbolic Geometry and Gravitational Waves
双曲几何和引力波
- 批准号:
2309084 - 财政年份:2023
- 资助金额:
$ 37.32万 - 项目类别:
Continuing Grant
Topics in Non-Euclidean / Hyperbolic Geometry
非欧几里得/双曲几何主题
- 批准号:
2890480 - 财政年份:2023
- 资助金额:
$ 37.32万 - 项目类别:
Studentship
Arithmetic Applications of Definable and Hyperbolic Geometry
可定义几何和双曲几何的算术应用
- 批准号:
RGPIN-2019-04178 - 财政年份:2022
- 资助金额:
$ 37.32万 - 项目类别:
Discovery Grants Program - Individual
The Jones Polynomial and Hyperbolic Geometry of Surfaces
曲面的琼斯多项式和双曲几何
- 批准号:
2203255 - 财政年份:2022
- 资助金额:
$ 37.32万 - 项目类别:
Continuing Grant
The Geometry of Hyperbolic 3-Manifolds
双曲3流形的几何
- 批准号:
2202718 - 财政年份:2022
- 资助金额:
$ 37.32万 - 项目类别:
Continuing Grant
Hyperbolic Geometry and Quantum Invariants
双曲几何和量子不变量
- 批准号:
2203334 - 财政年份:2022
- 资助金额:
$ 37.32万 - 项目类别:
Standard Grant
Geometry and dynamics of systems with a hyperbolic flavor
双曲线系统的几何和动力学
- 批准号:
RGPIN-2017-04592 - 财政年份:2022
- 资助金额:
$ 37.32万 - 项目类别:
Discovery Grants Program - Individual
Hyperbolic manifolds from a contact geometry perspective
从接触几何角度看双曲流形
- 批准号:
2750796 - 财政年份:2022
- 资助金额:
$ 37.32万 - 项目类别:
Studentship
Towards a mathematical description of complex networks: Effective structure and latent hyperbolic geometry
走向复杂网络的数学描述:有效结构和潜在双曲几何
- 批准号:
RGPIN-2019-05183 - 财政年份:2022
- 资助金额:
$ 37.32万 - 项目类别:
Discovery Grants Program - Individual
Conference on Complex Hyperbolic Geometry and Related Topics
复杂双曲几何及相关主题会议
- 批准号:
2225583 - 财政年份:2022
- 资助金额:
$ 37.32万 - 项目类别:
Standard Grant