Non-compact, random billiard systems; Quantum large deviations
非紧凑、随机台球系统;
基本信息
- 批准号:0405439
- 负责人:
- 金额:$ 8.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-07-01 至 2007-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractLenciThis research project consists of three parts: Part I deals withbilliards on non-compact tables, as models for hyperbolic dynamicalsystems with an infinite invariant measure. The plan is to extendto these dynamical systems certain important results available for compact billiards, including a suitable version of Pesin's Theory. This will require the rewriting of some notions of ergodic theory for the case of a non-probability measure. Part II concerns random billiards; more precisely, billiards with a random table (changing after each collision), a quenched random table (selected once and for all from a random ensemble), or a random law of reflection (in a fixed table). In the first two cases there is a physical invariant measure, and the PI will study its ergodic properties (including Lyapunov exponents and the like) for a typical realization of the random process. In the third case an equilibrium measure can be shown to exist, and its asymptotic properties will be investigated, together with the natural question of the stochastic stability at the zero-noise limit. Similar perturbative questions are considered for the other systems as well. Part III, in the realm of equilibrium statistical mechanics, considers the question of quantum large deviations. In a collaborative project, the PI sets out to initiate a theory of large deviations for a noncommutative quasi-local algebra on a d-dimensional lattice. Of primary interest is the convergence of the moment-generating function for an extensive observable, and the smoothness and physical significance of its limit.Billiards are a class of dynamical systems that has been mostextensively studied. This is so for a two-fold reason: On one hand,mathematically, they are relatively treatable, with their geometricfeatures often giving hints on how to prove a certain soughtresult. On the other hand, from the point of view of physics, they arefairly realistic models that have been applied to a variety of fields,from statistical mechanics to optics to scattering theory. Therefore the drive is natural to expand this class to cover new areas where it could have a remarkable impact: the family of open systems (every system with unbounded dynamics belongs to this category) and of random systems (which tries to justify when, and why, deterministic predictions still make sense in a noisy world). As for Part III, the theory of large deviations in statistical mechanics gives a theoretical understanding of the fact that large systems, which are deeply random from the observer's standpoint, yield nonetheless very accurate deterministic measurements. Although large deviations for classical systems have been the subject of massive and very successful research, a counterpart of quantum system (which should rightfully be even more fundamental) is conspicuously missing at the moment.
Lenci本研究项目包括三个部分:第一部分涉及非紧表上的台球,作为具有无穷不变测度的双曲动力系统的模型。该计划是extendto这些动力系统的某些重要成果可用于紧凑的台球,包括一个合适的版本Pesin的理论。这将需要重写遍历理论的一些概念的情况下,一个非概率措施。第二部分涉及随机台球;更准确地说,台球与随机表(每次碰撞后改变),淬火随机表(选择一次,从一个随机合奏),或随机反射定律(在一个固定的表)。在前两种情况下,有一个物理不变的措施,和PI将研究其遍历特性(包括李雅普诺夫指数等)的一个典型的实现随机过程。在第三种情况下,可以证明存在一个平衡措施,其渐近性质将被调查,连同自然问题的随机稳定性在零噪声限制。类似的微扰问题被认为是其他系统以及。第三部分,在平衡统计力学领域,考虑量子大偏差的问题。在一个合作项目中,PI开始着手研究d维格上的非交换准局部代数的大偏差理论。最主要的兴趣是矩母函数的收敛性及其极限的光滑性和物理意义。台球是一类被广泛研究的动力系统。这是因为两个方面的原因:一方面,在数学上,它们是相对可处理的,它们的几何特征经常给如何证明某个结果的提示。另一方面,从物理学的角度来看,它们是相当现实的模型,已被应用于各种领域,从统计力学到光学到散射理论。因此,很自然地,我们要扩展这一类别,以涵盖它可能产生显著影响的新领域:开放系统家族(每个具有无界动力学的系统都属于这一类别)和随机系统家族(试图证明确定性预测在嘈杂的世界中何时以及为什么仍然有意义)。至于第三部分,统计力学中的大偏差理论从理论上理解了这样一个事实,即从观察者的观点来看,大系统是非常随机的,但仍然产生非常精确的确定性测量。虽然经典系统的大偏差已经成为大规模和非常成功的研究的主题,但量子系统的对应物(它应该是更基本的)目前明显缺失。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marco Lenci其他文献
Global-local mixing for the Boole map
- DOI:
10.1016/j.chaos.2018.03.020 - 发表时间:
2018-06-01 - 期刊:
- 影响因子:
- 作者:
Claudio Bonanno;Paolo Giulietti;Marco Lenci - 通讯作者:
Marco Lenci
Semi-Dispersing Billiards with an Infinite Cusp I
- DOI:
10.1007/s00220-002-0710-7 - 发表时间:
2002-09-01 - 期刊:
- 影响因子:2.600
- 作者:
Marco Lenci - 通讯作者:
Marco Lenci
Marco Lenci的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于非结构网格的高精度CESE格式
- 批准号:11901602
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
适应复杂场景冲击波传输的高效紧致高精度动理学方法研究
- 批准号:11971070
- 批准年份:2019
- 资助金额:52.0 万元
- 项目类别:面上项目
间断Galerkin有限元方法在双曲守恒律和Vlasov系统中的算法设计及应用
- 批准号:11871428
- 批准年份:2018
- 资助金额:54.0 万元
- 项目类别:面上项目
带有源项双曲守恒律系统的保平衡性质高精度杂交格式及其应用
- 批准号:11801383
- 批准年份:2018
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
可压缩多介质流体力学的广义黎曼问题数值方法
- 批准号:11771054
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
非线性双曲方程的高阶HWENO方法的研究和应用
- 批准号:11601364
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
毫米波\亚毫米波多频段口径共用全息紧缩场的设计与试验技术研究
- 批准号:61101003
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
Improving modelling of compact binary evolution.
- 批准号:10903001
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Ergodic theory and multifractal analysis for non-uniformly hyperbolic dynamical systems with a non-compact state space
非紧状态空间非均匀双曲动力系统的遍历理论和多重分形分析
- 批准号:
24K06777 - 财政年份:2024
- 资助金额:
$ 8.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Towards compact and efficient nuclear reactors
迈向紧凑高效的核反应堆
- 批准号:
EP/Y022157/1 - 财政年份:2024
- 资助金额:
$ 8.31万 - 项目类别:
Research Grant
Ultra-compact Sub-mm Heterodyne Focal Plane Array Frontends for Radio Astronomical Observation
用于射电天文观测的超紧凑亚毫米外差焦平面阵列前端
- 批准号:
23K20871 - 财政年份:2024
- 资助金额:
$ 8.31万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of Efficient Black Hole Spectroscopy and a Desktop Cluster for Detecting Compact Binary Mergers
开发高效黑洞光谱和用于检测紧凑二元合并的桌面集群
- 批准号:
2412341 - 财政年份:2024
- 资助金额:
$ 8.31万 - 项目类别:
Continuing Grant
PFI-TT: Compact, Coherent, Hydrophone Array Systems for Real-Time, Instantaneous, Wide-Area, Ocean Acoustic Monitoring from Wind Farms and Other Ocean Platforms
PFI-TT:紧凑、相干、水听器阵列系统,用于风电场和其他海洋平台的实时、瞬时、广域海洋声学监测
- 批准号:
2345791 - 财政年份:2024
- 资助金额:
$ 8.31万 - 项目类别:
Standard Grant
CAREER: Novel Microplasmas for Highly Compact and Versatile RF Electronics
事业:用于高度紧凑和多功能射频电子器件的新型微等离子体
- 批准号:
2337815 - 财政年份:2024
- 资助金额:
$ 8.31万 - 项目类别:
Continuing Grant
Compact Optomechanical Seismic Sensors for LIGO
用于 LIGO 的紧凑型光机地震传感器
- 批准号:
2426360 - 财政年份:2024
- 资助金额:
$ 8.31万 - 项目类别:
Standard Grant
EFFICIENT COMPACT MODULAR THERMAL ENERGY STORAGE SYSTEM
高效紧凑的模块化热能存储系统
- 批准号:
10066626 - 财政年份:2023
- 资助金额:
$ 8.31万 - 项目类别:
EU-Funded
Auto-compact: AI-powered quality control system for automotive OEMs and Finished Vehicle Logistics (FVL) operators
Auto-compact:面向汽车原始设备制造商和整车物流 (FVL) 运营商的人工智能质量控制系统
- 批准号:
83003000 - 财政年份:2023
- 资助金额:
$ 8.31万 - 项目类别:
Innovation Loans
Equivariant Schubert calculus for p-compact groups
p-紧群的等变舒伯特微积分
- 批准号:
23K03092 - 财政年份:2023
- 资助金额:
$ 8.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




