Operads, homotopy theory and string topology
运算、同伦理论和弦拓扑
基本信息
- 批准号:0405693
- 负责人:
- 金额:$ 10.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-09-01 至 2008-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
McClure proposes to build on prior work with Jeff Smith which allows severalimportant operads and their actions to be investigated combinatorially(specifically, cosimplicially). One direction, which is already partiallycompleted, is to relate our work to that of Chas and Sullivan. Expectedresults in this direction are: the Chas-Sullivan operations are induced by achain-level action of the framed little 2-disks operad (this is an analogue ofDeligne's Hochschild cohomology conjecture) and the Eilenberg-Moore spectralsequence converging to the homology of the free loop space of a compactoriented PL manifold is a spectral sequence of Batalin-Vilkovisky algebras.Another problem which may be accessible by these methods is Kontsevich's ``higher Deligne conjecture.'' A longer-term goal is to combine Mandell's theorem that E-infinity chain algebras model topological spaces with our combinatorial E-infinity chain operads to obtain explicit results.An interesting development in theoretical physics during the last twenty yearshas been the increasing significance of homotopy theory. It seems to beuseful to create chain-complex models for quantum field theories, both as a preliminary step toward the full development of such theories and as a permanent computational device. Operads have played an important role as anorganizational tool for this kind of work. Recently Chas and Sullivan haveshown that the unbased loop space of any compact oriented PL manifold is aquantum field theory at the level of homology; this raises the question ofwhether their work can be lifted to the chain-complex level and whether it is related to an operad action (specifically, to an action of the framed little disks operad). Techniques developed by McClure and Smith are well-adapted tothis question, and this is one of the directions that McClure intends topursue.
麦克卢尔建议建立在杰夫·史密斯之前工作的基础上,该工作允许对几个重要的歌剧及其行为进行组合研究(具体地说,以协简单的方式)。一个已经部分完成的方向是将我们的工作与查斯和沙利文的工作联系起来。在这一方向的预期结果是:Chas-Sullivan运算是由框架的小2-圆盘算子的链级作用(这是Deligne的Hochschild上同调猜想的类似)诱导的,并且收敛于紧定向PL流形的自由环空间的同调的Eilenberg-Moore谱序列是Batalin-Vilkovisky代数的谱序列。一个较长期的目标是将Mandell关于E-无限链代数建模拓扑空间的定理与我们的组合E-无限链运算符相结合,以获得明确的结果。在过去的二十年中,理论物理中的一个有趣的发展是同伦理论的重要性日益增加。为量子场论创建链状复杂模型似乎是有用的,既是迈向此类理论全面发展的初步步骤,也是一种永久的计算设备。歌剧作为这类工作的组织工具发挥了重要作用。最近,Chas和Sullivan发现,任何紧致定向PL流形的无基环空间都是同调水平上的水量子场论,这就提出了一个问题:他们的工作是否可以提升到链-复数水平,以及它是否与算子作用(具体地说,与框定的小圆盘算子的作用)有关。麦克卢尔和史密斯开发的技术很好地适应了这个问题,这也是麦克卢尔打算探索的方向之一。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James McClure其他文献
Inference of relative permeability curves in reservoir rocks with ensemble Kalman method
集合卡尔曼法推断储层岩石相对渗透率曲线
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Xueqing Zhou;Haochen Wang;James McClure;Cheng Chen;H. Xiao - 通讯作者:
H. Xiao
Deep-learning-based workflow for boundary and small target segmentation in digital rock images using UNet++ and IK-EBM
基于深度学习的工作流程,使用 UNet 和 IK-EBM 在数字岩石图像中进行边界和小目标分割
- DOI:
10.1016/j.petrol.2022.110596 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Hongsheng Wang;Laura E. Dalton;M. Fan;R. Guo;James McClure;D. Crandall;Cheng Chen - 通讯作者:
Cheng Chen
Digital Rocks Portal (Digital Porous Media): connecting data, simulation and community
Digital Rocks Portal(数字多孔介质):连接数据、模拟和社区
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
M. Prodanović;M. Esteva;James McClure;Bernard C. Chang;Javier E. Santos;Anuradha Radhakrishnan;Ankita Singh;H. Khan - 通讯作者:
H. Khan
A struggle of incomplete visions: Creative destruction vs. The economy of knowledge
- DOI:
10.1007/s11138-023-00629-9 - 发表时间:
2023-08-25 - 期刊:
- 影响因子:0.400
- 作者:
James McClure;Nathanael Snow;David Thomas - 通讯作者:
David Thomas
Dynamic mode decomposition for analyzing multi-phase flow in porous media
用于分析多孔介质中多相流的动态模式分解
- DOI:
10.1016/j.advwatres.2023.104423 - 发表时间:
2023 - 期刊:
- 影响因子:4.7
- 作者:
Catherine Spurin;R. Armstrong;James McClure;Steffen Berg - 通讯作者:
Steffen Berg
James McClure的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James McClure', 18)}}的其他基金
Mathematical Sciences: Homotopy Theory
数学科学:同伦论
- 批准号:
9504530 - 财政年份:1995
- 资助金额:
$ 10.8万 - 项目类别:
Continuing Grant
Incorporation of NMR Techniques into the Chemistry Curriculum from Freshman to Senior Level Classes
将核磁共振技术纳入从新生到高年级的化学课程
- 批准号:
9451451 - 财政年份:1994
- 资助金额:
$ 10.8万 - 项目类别:
Standard Grant
Mathematical Sciences: Homotopy Theory With An Emphasis On Maps Between Classifying Spaces
数学科学:强调分类空间之间的映射的同伦理论
- 批准号:
8803279 - 财政年份:1988
- 资助金额:
$ 10.8万 - 项目类别:
Standard Grant
Mathematical Sciences: Homotopy Theory and Topological K-Theory
数学科学:同伦理论和拓扑K理论
- 批准号:
8603496 - 财政年份:1986
- 资助金额:
$ 10.8万 - 项目类别:
Standard Grant
Mathematical Sciences: Equivariant and Extraordinary K-Theory
数学科学:等变和非凡 K 理论
- 批准号:
8514937 - 财政年份:1985
- 资助金额:
$ 10.8万 - 项目类别:
Standard Grant
Mathematical Sciences: Equivariant and Extraordinary K-Theory
数学科学:等变和非凡 K 理论
- 批准号:
8315431 - 财政年份:1983
- 资助金额:
$ 10.8万 - 项目类别:
Continuing Grant
相似海外基金
Spheres of Influence: Arithmetic Geometry and Chromatic Homotopy Theory
影响范围:算术几何和色同伦理论
- 批准号:
2401472 - 财政年份:2024
- 资助金额:
$ 10.8万 - 项目类别:
Continuing Grant
A1-Homotopy Theory and Applications to Enumerative Geometry and Number Theory
A1-同伦理论及其在枚举几何和数论中的应用
- 批准号:
2405191 - 财政年份:2024
- 资助金额:
$ 10.8万 - 项目类别:
Standard Grant
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
- 批准号:
2414922 - 财政年份:2024
- 资助金额:
$ 10.8万 - 项目类别:
Standard Grant
Computations in Classical and Motivic Stable Homotopy Theory
经典和动机稳定同伦理论的计算
- 批准号:
2427220 - 财政年份:2024
- 资助金额:
$ 10.8万 - 项目类别:
Standard Grant
Conference: A Panorama of Homotopy theory
会议:同伦理论全景
- 批准号:
2316253 - 财政年份:2023
- 资助金额:
$ 10.8万 - 项目类别:
Standard Grant
Invertibility and deformations in chromatic homotopy theory
色同伦理论中的可逆性和变形
- 批准号:
2304797 - 财政年份:2023
- 资助金额:
$ 10.8万 - 项目类别:
Standard Grant
Critical symplectic geometry, Lagrangian cobordisms, and stable homotopy theory
临界辛几何、拉格朗日配边和稳定同伦理论
- 批准号:
2305392 - 财政年份:2023
- 资助金额:
$ 10.8万 - 项目类别:
Standard Grant
Conference: Motivic and non-commutative aspects of enumerative geometry, Homotopy theory, K-theory, and trace methods
会议:计数几何的本构和非交换方面、同伦理论、K 理论和迹方法
- 批准号:
2328867 - 财政年份:2023
- 资助金额:
$ 10.8万 - 项目类别:
Standard Grant
Conference: Student Support for Second International Conference on Homotopy Type Theory (HoTT 2023)
会议:第二届同伦类型理论国际会议 (HoTT 2023) 的学生支持
- 批准号:
2318492 - 财政年份:2023
- 资助金额:
$ 10.8万 - 项目类别:
Standard Grant
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
- 批准号:
2314082 - 财政年份:2023
- 资助金额:
$ 10.8万 - 项目类别:
Standard Grant














{{item.name}}会员




