Mathematical Sciences: Homotopy Theory
数学科学:同伦论
基本信息
- 批准号:9504530
- 负责人:
- 金额:$ 8.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1995
- 资助国家:美国
- 起止时间:1995-07-15 至 1999-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9504530 McClure The principal investigator is working on a variety of questions in homotopy theory. He is continuing his work on topological Andre-Quillen homology and its relation to unstable homotopy theory. He is also investigating the properties of a construction on A-infinity ring spectra that is analogous to the center of a ring in algebra; this seems likely to have applications to a question posed by Mahowald, Ravenel and Shick in their work on the telescope conjecture. He intends to do some calculations with cyclotomic homology (a construction that was defined by Bokstedt, Goodwillie, Hsiang and Madsen, which has important applications in algebraic K-theory). He is investigating the question of whether the wedge of the even suspensions of a complex-oriented E-infinity ring is again an E-infinity ring, and some consequences that this property would have. He intends to work on several problems which relate homotopy theory to C*-algebras. He is investigating some old questions posed by Adams-Wilkerson and Atiyah involving the relationship between Adams operations and Steenrod operations in the Atiyah-Hirzebruch spectral sequence. He is seeking a better understanding of the Morava K-theory of extended powers. Topology is the study of certain properties that shapes can have that do not depend on detailed measurement (the well-known example is that a doughnut and a coffee cup are the same to a topologist, because one can be stretched to look exactly like the other). Algebraic topology is a method for describing shapes by means of certain kinds of calculation. For example, the surfaces of the doughnut and the coffee cup could be divided into non-overlapping triangles, and one could then calculate the number of triangles plus the number of vertices minus the number of edges; the result would be the same in both cases, and this fact shows (by means of a nontrivial theorem) that one shape can be stretched into the other. In order to get more info rmation from these calculations, one incorporates them into the framework of abstract algebra by relating them to groups or rings. One of the most interesting trends in the subject in the last decade has been to bring in abstract algebra at an earlier stage of the process by relating the shapes themselves to groups or rings; that is what the phrase "A-infinity ring spectrum" refers to. The main purpose of this project is to continue the development of this idea. ***
9504530麦克卢尔 首席研究员正在研究同伦理论中的各种问题。 他正在继续他的工作拓扑安德烈-奎伦同源性及其关系不稳定同伦理论。 他还调查的性质建设的A-无限环光谱,类似于中心的一环代数;这似乎有可能有应用程序提出的问题Mahowald,Ravenel和希克在他们的工作望远镜猜想。 他打算用分圆同调(一种由Bokstedt、Goodwillie、Hsiang和Madsen定义的结构,在代数K理论中有重要应用)做一些计算。 他正在调查的问题,是否楔甚至悬浮液的复杂定向E-无限环再次是一个E-无限环,以及一些后果,这一性质将有。 他打算工作的几个问题有关同伦理论的C*-代数。 他正在调查一些老问题所提出的亚当斯,威尔克森和阿蒂亚涉及之间的关系亚当斯业务和Steenrod业务的阿蒂亚,Hirzebruch频谱序列。 他正在寻求更好地理解摩拉瓦K理论的扩展权力。 拓扑学是研究形状可以具有的某些性质,这些性质不依赖于详细的测量(众所周知的例子是,甜甜圈和咖啡杯对拓扑学家来说是一样的,因为一个可以被拉伸到看起来完全像另一个)。 代数拓扑学是一种通过某种计算来描述形状的方法。 例如,甜甜圈和咖啡杯的表面可以分成不重叠的三角形,然后可以计算三角形的数量加上顶点的数量减去边的数量;结果在两种情况下是相同的,这一事实表明(通过非平凡定理)一个形状可以延伸到另一个形状。 为了从这些计算中获得更多的信息,人们通过将它们与群或环联系起来,将它们纳入抽象代数的框架中。 在过去的十年里,这个学科最有趣的趋势之一就是在抽象代数的早期阶段,通过将形状本身与群或环联系起来,引入抽象代数;这就是短语“A-无穷环谱”所指的。 这个项目的主要目的是继续发展这个想法。 ***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James McClure其他文献
Inference of relative permeability curves in reservoir rocks with ensemble Kalman method
集合卡尔曼法推断储层岩石相对渗透率曲线
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Xueqing Zhou;Haochen Wang;James McClure;Cheng Chen;H. Xiao - 通讯作者:
H. Xiao
Deep-learning-based workflow for boundary and small target segmentation in digital rock images using UNet++ and IK-EBM
基于深度学习的工作流程,使用 UNet 和 IK-EBM 在数字岩石图像中进行边界和小目标分割
- DOI:
10.1016/j.petrol.2022.110596 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Hongsheng Wang;Laura E. Dalton;M. Fan;R. Guo;James McClure;D. Crandall;Cheng Chen - 通讯作者:
Cheng Chen
Digital Rocks Portal (Digital Porous Media): connecting data, simulation and community
Digital Rocks Portal(数字多孔介质):连接数据、模拟和社区
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
M. Prodanović;M. Esteva;James McClure;Bernard C. Chang;Javier E. Santos;Anuradha Radhakrishnan;Ankita Singh;H. Khan - 通讯作者:
H. Khan
A struggle of incomplete visions: Creative destruction vs. The economy of knowledge
- DOI:
10.1007/s11138-023-00629-9 - 发表时间:
2023-08-25 - 期刊:
- 影响因子:0.400
- 作者:
James McClure;Nathanael Snow;David Thomas - 通讯作者:
David Thomas
Dynamic mode decomposition for analyzing multi-phase flow in porous media
用于分析多孔介质中多相流的动态模式分解
- DOI:
10.1016/j.advwatres.2023.104423 - 发表时间:
2023 - 期刊:
- 影响因子:4.7
- 作者:
Catherine Spurin;R. Armstrong;James McClure;Steffen Berg - 通讯作者:
Steffen Berg
James McClure的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James McClure', 18)}}的其他基金
Operads, homotopy theory and string topology
运算、同伦理论和弦拓扑
- 批准号:
0405693 - 财政年份:2004
- 资助金额:
$ 8.39万 - 项目类别:
Standard Grant
Incorporation of NMR Techniques into the Chemistry Curriculum from Freshman to Senior Level Classes
将核磁共振技术纳入从新生到高年级的化学课程
- 批准号:
9451451 - 财政年份:1994
- 资助金额:
$ 8.39万 - 项目类别:
Standard Grant
Mathematical Sciences: Homotopy Theory With An Emphasis On Maps Between Classifying Spaces
数学科学:强调分类空间之间的映射的同伦理论
- 批准号:
8803279 - 财政年份:1988
- 资助金额:
$ 8.39万 - 项目类别:
Standard Grant
Mathematical Sciences: Homotopy Theory and Topological K-Theory
数学科学:同伦理论和拓扑K理论
- 批准号:
8603496 - 财政年份:1986
- 资助金额:
$ 8.39万 - 项目类别:
Standard Grant
Mathematical Sciences: Equivariant and Extraordinary K-Theory
数学科学:等变和非凡 K 理论
- 批准号:
8514937 - 财政年份:1985
- 资助金额:
$ 8.39万 - 项目类别:
Standard Grant
Mathematical Sciences: Equivariant and Extraordinary K-Theory
数学科学:等变和非凡 K 理论
- 批准号:
8315431 - 财政年份:1983
- 资助金额:
$ 8.39万 - 项目类别:
Continuing Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Mathematical Sciences: Algebraic Cycles, Group Schemes, K-Theory and Connections between Stable Homotopy and Group Cohomology
数学科学:代数环、群方案、K 理论以及稳定同伦与群上同调之间的联系
- 批准号:
9704794 - 财政年份:1997
- 资助金额:
$ 8.39万 - 项目类别:
Continuing Grant
Mathematical Sciences: Theory and Application of Homotopy Techniques in Nonlinear Programming
数学科学:非线性规划同伦技术的理论与应用
- 批准号:
9625968 - 财政年份:1996
- 资助金额:
$ 8.39万 - 项目类别:
Standard Grant
Mathematical Sciences: Homotopy Algorithms for Solving Sparse Polynomial Systems
数学科学:求解稀疏多项式系统的同伦算法
- 批准号:
9504953 - 财政年份:1995
- 资助金额:
$ 8.39万 - 项目类别:
Standard Grant
Mathematical Sciences: Problems in Homotopy Theory, K-theory, and Representation Theory
数学科学:同伦理论、K 理论和表示论中的问题
- 批准号:
9423719 - 财政年份:1995
- 资助金额:
$ 8.39万 - 项目类别:
Standard Grant
Mathematical Sciences: Homotopy Theory and its Applications
数学科学:同伦理论及其应用
- 批准号:
9504989 - 财政年份:1995
- 资助金额:
$ 8.39万 - 项目类别:
Continuing Grant
Mathematical Sciences: Floer Homotopy, Kontsevich-Gromov- Witten Theory, and Quantum Cohomology
数学科学:Floer 同伦、Kontsevich-Gromov-Witten 理论和量子上同调
- 批准号:
9504234 - 财政年份:1995
- 资助金额:
$ 8.39万 - 项目类别:
Continuing Grant
Mathematical Sciences: Manifolds and Homotopy Theory
数学科学:流形和同伦理论
- 批准号:
9509744 - 财政年份:1995
- 资助金额:
$ 8.39万 - 项目类别:
Continuing Grant
Mathematical Sciences: Homotopy Theory of Spectra
数学科学:谱的同伦论
- 批准号:
9505130 - 财政年份:1995
- 资助金额:
$ 8.39万 - 项目类别:
Standard Grant
Mathematical Sciences: Localization and Periodicity in Homotopy Theory
数学科学:同伦理论中的定域性和周期性
- 批准号:
9504497 - 财政年份:1995
- 资助金额:
$ 8.39万 - 项目类别:
Continuing Grant
Mathematical Sciences: Homotopy Theory and Its Applications
数学科学:同伦理论及其应用
- 批准号:
9422413 - 财政年份:1995
- 资助金额:
$ 8.39万 - 项目类别:
Continuing Grant