Random matrices, real trees, mortality models, and stepping-stone processes

随机矩阵、真实树、死亡率模型和垫脚石过程

基本信息

  • 批准号:
    0405778
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-08-01 至 2009-07-31
  • 项目状态:
    已结题

项目摘要

0405778Evans The PI extends the inter-disciplinary importance of random matrices by establishing further connections between random matrix theory, stochastic processes, analysis, combinatorics and mathematical physics. He brings recent ideas from metric geometry to bear on the analysis of algorithms for simulating uniform random trees and related questions about large random trees. He uses new constructions of exchangeable systems of interacting particles to create novel genetic models that extend previous ones of the stepping-stone type. He develops tractable and flexible probabilistic structures on the space of phylogenetic trees that will enhance exploratory data analysis and statistical inference in phylogeny. He provides new tools for mathematical demographers in their attempts to model mortality rates and understand the features of such models that give rise to Gompertz exponential increase for most of the lifespan and mortality plateaus in extreme senescence. Random matrices have recently been a focus of intense mathematical activity because of the connections they establish with seemingly disparate areas ranging from the Riemann Hypothesis (probably the outstanding unsolved problem in pure mathematics) to efficient design of cell phone networks. The PI provides new tools for understanding the structure of these objects. An understanding of the nature of the space of trees and ways of picking trees randomly is important in areas ranging from the design of data bases to constructing evolutionary family trees from DNA sequence data. The PI uses new ideas from metric geometry, a seemingly unrelated branch of mathematics, to advance the study of these objects. A current conundrum in demographic research is the fact that, for a vast array of species, mortality increases exponentially with age up to extreme old age, at which point it levels off. The PI shows that this behavior is a robust consequence of a whole general class of underlying models for the ageing process.
0405778Evans PI通过建立随机矩阵理论,随机过程,分析,组合学和数学物理之间的进一步联系,扩展了随机矩阵的跨学科重要性。他带来了最近的想法从度量几何承担的分析算法模拟均匀随机树和相关问题的大型随机树。他使用相互作用粒子的可交换系统的新结构来创建新的遗传模型,扩展了以前的垫脚石类型。他在系统发育树的空间上开发了易处理和灵活的概率结构,这将增强系统发育中的探索性数据分析和统计推断。他提供了新的工具,为数学人口学家在他们试图建模死亡率,并了解这些模型的特点,导致Gompertz指数增加的大部分寿命和死亡率高原在极端衰老。 随机矩阵最近一直是激烈的数学活动的焦点,因为它们与看似不同的领域建立了联系,从黎曼假设(可能是纯数学中悬而未决的问题)到手机网络的有效设计。PI为理解这些对象的结构提供了新的工具。理解树的空间的性质和随机挑选树的方法在从数据库的设计到从DNA序列数据构建进化家谱的各个领域都很重要。PI使用来自度量几何的新思想,一个看似无关的数学分支,来推进对这些物体的研究。目前人口统计学研究中的一个难题是,对于大量物种来说,死亡率随着年龄的增长呈指数级增长,直到极端老年,在这一点上它趋于稳定。PI表明,这种行为是老化过程的整个一般类基础模型的稳健结果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steven Evans其他文献

Lean pathways in orthopaedics: multiple wins for sustainability
  • DOI:
    10.1016/j.mporth.2022.07.003
  • 发表时间:
    2022-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Scarlett McNally;Emily Charlotte Phizacklea;Victoria Naomi Gibbs;Robyn Brown;Katharine Vanessa Wilcocks;Scarlett O'Brien;Holly Kate Burton;Steven Evans;Martinique Vella-Baldacchino;Alaa Khader;Irrum Afzal;Roshana Mehdian;Kerl Michelle Power
  • 通讯作者:
    Kerl Michelle Power
Automated detection of hereditary syndromes using data mining.
使用数据挖掘自动检测遗传综合症。
The structure of instructional knowledge: An operational model
  • DOI:
    10.1007/bf00123461
  • 发表时间:
    1974-01-01
  • 期刊:
  • 影响因子:
    2.100
  • 作者:
    Steven Evans
  • 通讯作者:
    Steven Evans
Groundwater Level Mapping Tool: An open source web application for assessing groundwater sustainability
地下水位测绘工具:用于评估地下水可持续性的开源网络应用程序
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Byu Scholarsarchive;Steven Evans;Norman L. Jones;G. Williams;D. Ames;James Nelson
  • 通讯作者:
    James Nelson
991-73 Ultrarapid Subthreshold Stimulation Delivered via Epicardial Patches can Terminate Reentrant Ventricular Tachycardia in a Canine Model
  • DOI:
    10.1016/0735-1097(95)92766-x
  • 发表时间:
    1995-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Maurice Weiss;Steven Evans;Andrew Grunwald;Robert Palazzo;Ulane Neveling;Stephen Blumberg;Monty Bodenheimer
  • 通讯作者:
    Monty Bodenheimer

Steven Evans的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steven Evans', 18)}}的其他基金

Limits via sampling of large discrete and continuous structures
通过大型离散和连续结构采样进行限制
  • 批准号:
    1512933
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Genealogy of branching populations, new descriptions of large random trees, and a mathematical framework for the evolution of senescence
分支种群的谱系、大型随机树的新描述​​以及衰老进化的数学框架
  • 批准号:
    0907630
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Measure-valued and Partition-valued Processes and Random Matrices
测值过程和分值过程以及随机矩阵
  • 批准号:
    0071468
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Seminar on Stochastic Processes 1999
随机过程研讨会 1999
  • 批准号:
    9901125
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Measure-Valued Processes: Coagulation and Coalescence
测量值过程:凝结和聚结
  • 批准号:
    9703845
  • 财政年份:
    1997
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Presidential Young Investigator Award
数学科学:总统青年研究员奖
  • 批准号:
    9158583
  • 财政年份:
    1991
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Interacting Superprocesses
数学科学:相互作用的超级过程
  • 批准号:
    9015708
  • 财政年份:
    1990
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

基于Riemann-Hilbert方法的相关问题研究
  • 批准号:
    11026205
  • 批准年份:
    2010
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Reconfigurable Intelligent Surfaces 2.0 for 6G: Beyond Diagonal Phase Shift Matrices
适用于 6G 的可重构智能表面 2.0:超越对角相移矩阵
  • 批准号:
    EP/Y004086/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Designing synthetic matrices for enhanced organoid development: A step towards better disease understanding
设计合成基质以增强类器官发育:更好地了解疾病的一步
  • 批准号:
    MR/Y033760/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
2024 Signal Transduction in Engineered Extracellular Matrices Gordon Research Conference and Seminar; Southern New Hampshire University, Manchester, New Hampshire; 20-26 July 2024
2024年工程细胞外基质信号转导戈登研究会议及研讨会;
  • 批准号:
    2414497
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Electrospun mucoadhesive matrices for polymersome-mediated mRNA vaccine delivery
用于聚合物囊泡介导的 mRNA 疫苗递送的电纺粘膜粘附基质
  • 批准号:
    BB/Y007514/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Collaborative Research: Random Matrices and Algorithms in High Dimension
合作研究:高维随机矩阵和算法
  • 批准号:
    2306438
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Random Matrices and Functional Inequalities on Spaces of Graphs
图空间上的随机矩阵和函数不等式
  • 批准号:
    2331037
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Some topics in Analysis and Probability in Metric Measure Spaces, Random Matrices, and Diffusions
度量测度空间、随机矩阵和扩散中的分析和概率中的一些主题
  • 批准号:
    2247117
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Novel Bioprinted Neural Stem Cell-Embedded Hydrogel Matrices for Enhanced Treatment of Glioblastoma
新型生物打印神经干细胞嵌入水凝胶基质,用于增强胶质母细胞瘤的治疗
  • 批准号:
    10749330
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Asymptotics of Toeplitz determinants, soft Riemann-Hilbert problems and generalised Hilbert matrices (HilbertToeplitz)
Toeplitz 行列式的渐进性、软黎曼-希尔伯特问题和广义希尔伯特矩阵 (HilbertToeplitz)
  • 批准号:
    EP/X024555/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Random Matrices, Random Graphs, and Deep Neural Networks
随机矩阵、随机图和深度神经网络
  • 批准号:
    2331096
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了