Research in Classical Minimal Surface Theory

经典极小曲面理论研究

基本信息

  • 批准号:
    0405836
  • 负责人:
  • 金额:
    $ 10.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-07-01 至 2007-06-30
  • 项目状态:
    已结题

项目摘要

DMS-0405836Title: Research in classical minimal surface theoryPI: William H. Meeks, University of Massachusetts (Amherst)ABSTRACTProposed Research Project AbstractIn this proposal the researcher will study the geometry, asymptoticbehavior, conformal structure and topology of properly embeddedminimal surfaces in three-dimensional Euclidean space. One of the maingoals of the proposal is to classify all of the properly embedded minimal surfaces which can be parametrized by domains in the Euclidean plane andto describe the asymptotic geometry of all finite genus examples.Related theoretical techniques concerning compactness, regularity andconvergence of minimal surfaces of locally bounded genus will beinvestigated as well. One hoped for application of this research isto classify all smooth finite group actions on the three-dimensionalsphere. As an outgrowth of his recent joint manuscript with CharlesFrohman on the topological classification for minimal surfaces, theresearcher proposes to prove that Bryant surfaces in hyperbolic three-space are unknotted.Classical minimal surface theory has its roots in 18-th and 19-thcentury mathematics. Minimal surfaces are the firstimportant examples of what is called the calculus of variations, firstdescribed by Euler around 1735. Physically minimal surfaces can bemodeled locally as soap films on wires or by surfaces of least-area relative to their local boundaries. Minimal surfaces play an importantrole as a tool in the study of three-dimensional topology andRiemannian geometry. The subject of minimal surfaces has a broad impact in mathematics andphysical sciences. Minimal surfaces are stationary fluid interfaces,sotheir shapes arise in many physical problems. The work in thisproposal would classify the possible physical shapes which could occuras infinite interfaces. Many of the known examples of minimal surfacesare observed physically, so it is of interest to have a rigoroustheorem which predicts the shapes which can occur.The research proposed here strongly impacts the area of classicaldifferential geometry of surfaces in three-dimensional Euclideanspace. As is well known to geometers, minimal surface theory has beenand continues to be one of the principal tools for proving theorems ingeneral relativity and three-dimensional topology. One well-knownsuch application is Schoen and Yau's proof of the Positive MassConjecture. Recent work of Gabai on the Generalized Smale Conjectureshows the continued importance of minimal surfaces inthree-dimensional topology. Most of the research proposed here is related to andmotivated by the hope that it will lead to a positive solution of thePitts-Rubenstein Conjecture and to the classification ofthree-manifolds with finite fundamental group. This hoped fortopological application to one of the outstanding classificationproblems in mathematics has its roots in previous joint research bythe researcher, Peter Scott, Charles Frohman and S. T. Yau. In partbecause of the important connections with other areas of mathematicsand the ease in which it is possible to make computer graphicspictures of beautiful classical examples, minimal surfaces continue tobe one of the principal topics for popular science articles and publicscience exhibits. Thus, indirectly, the exciting research problemsoutlined in this proposal help bring many young scientists andmathematicians to the frontiers of research.
DMS-0405836题目:经典极小曲面理论研究PI:William H. Meeks,马萨诸塞州大学(Amherst)摘要建议的研究项目摘要在这个建议中,研究者将研究三维欧氏空间中适当嵌入极小曲面的几何、渐近行为、共形结构和拓扑。 本文的主要目的之一是对欧氏平面上所有可由区域参数化的适当嵌入极小曲面进行分类,并描述所有有限亏格实例的渐近几何,同时也研究了局部有界亏格极小曲面的紧性、正则性和收敛性等相关理论技术。 本文的一个应用是对三维球面上的光滑有限群作用进行分类。 作为他最近与CharlesFrohman关于极小曲面拓扑分类的联合手稿的一个衍生物,研究者提出证明双曲三维空间中的Bryant曲面是无结的。极小曲面是所谓的变分法的第一个重要例子,最早由欧拉在1735年左右描述。 物理极小曲面可以局部地建模为导线上的肥皂膜或相对于其局部边界的最小面积曲面。 极小曲面作为研究三维拓扑和黎曼几何的一个重要工具。极小曲面在数学和物理科学中有着广泛的影响。 极小曲面是静止的流体界面,因此在许多物理问题中会出现极小曲面的形状。 这个提议的工作将把可能出现的物理形状分类为无限界面。 许多已知的极小曲面的例子都是物理上可以观察到的,因此有一个严格的定理来预测可能出现的形状是很有意义的。这里提出的研究强烈地影响了三维欧氏空间中曲面的经典微分几何领域。 正如几何学家所熟知的,极小曲面理论一直是并将继续是证明广义相对论和三维拓扑学定理的主要工具之一。 一个众所周知的应用是Schoen和Yau对正质量猜想的证明。 Gabai最近关于广义Smale猜想的工作表明了极小曲面在三维拓扑中的重要性。本文所做的大部分研究都是希望通过它能得到一个正解,并能得到具有有限基本群的三流形的分类。 这希望拓扑应用于数学中的一个突出的分类问题,其根源在于研究人员彼得斯科特,查尔斯弗罗曼和S。T.你。 部分原因是与其他领域的重要联系,以及可以轻松地将美丽的经典例子制作成计算机图形,最小表面仍然是科普文章和公共科学展览的主要主题之一。 因此,间接地,在这一建议中概述的令人兴奋的研究问题有助于将许多年轻的科学家和数学家带到研究的前沿。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Meeks其他文献

MP67-12 PEYRONIE'S DISEASE IS ASSOCIATED WITH INCREASED IMMUNE REACTIVITY: ANALYSIS OF UNITED STATES CLAIMS DATA
  • DOI:
    10.1016/j.juro.2018.02.2196
  • 发表时间:
    2018-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Taylor P. Kohn;Daniel Pichardo;Katherine M. Rodriguez;William Meeks;Larry I. Lipshultz;Alexander W. Pastuszak
  • 通讯作者:
    Alexander W. Pastuszak
MP96-14 ANALYSIS OF NATIONAL TRENDS IN HOSPITAL ACQUIRED CONDITIONS FOLLOWING MAJOR UROLOGIC SURGERY BEFORE AND AFTER IMPLEMENTATION OF THE HOSPITAL ACQUIRED CONDITION REDUCTION PROGRAM
  • DOI:
    10.1016/j.juro.2017.02.3037
  • 发表时间:
    2017-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Temitope Rude;Nicholas Donin;Matthew Cohn;William Meeks;Scott Gulig;James Wysock;Danil Makarov;Marc Bjurlin
  • 通讯作者:
    Marc Bjurlin
INSANE IN THE MEMBRANE: THE ROLE OF CATHETERIZATION IN THE DIAGNOSIS OF A SUBAORTIC MEMBRANE
  • DOI:
    10.1016/s0735-1097(24)06091-1
  • 发表时间:
    2024-04-02
  • 期刊:
  • 影响因子:
  • 作者:
    Rebecca Kocak;Christina Romano;Cara Joseph;Meer Fakhry;William Meeks;Ninad M. Zaman;Muhammad Mohyuddin;Hata Mujadzic;Gabrielle Rhinehart;Patrick Anthony Xavier Hall
  • 通讯作者:
    Patrick Anthony Xavier Hall
MP33-07 QUALITY OF LIFE OUTCOMES AFTER ROBOTIC SACROCOLOPEXY FOR THE MANAGEMENT OF PELVIC ORGAN PROLAPSE
  • DOI:
    10.1016/j.juro.2018.02.1078
  • 发表时间:
    2018-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Annah Vollstedt;Paholo Barboglio;William Meeks;Veronica Triaca
  • 通讯作者:
    Veronica Triaca
YOU UNDERESTIMATE MY POWER: EMPHASIZING DYSSYNCHRONY IN THE ERA OF SYNCHRONY FOR HCM PATIENTS
  • DOI:
    10.1016/s0735-1097(24)05664-x
  • 发表时间:
    2024-04-02
  • 期刊:
  • 影响因子:
  • 作者:
    Christina Romano;Dominic J. Vacca;William Meeks;Ninad M. Zaman;Rebecca Kocak;Muhammad Mohyuddin;Hata Mujadzic;Gabrielle Rhinehart;Meer Fakhry
  • 通讯作者:
    Meer Fakhry

William Meeks的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Meeks', 18)}}的其他基金

Research in the Geometry of Minimal and Constant Mean Curvature Surfaces
最小且恒定平均曲率曲面的几何研究
  • 批准号:
    1309236
  • 财政年份:
    2013
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Standard Grant
Research in the Geometry of Minimal and Constant Mean Curvature Surfaces
最小且恒定平均曲率曲面的几何研究
  • 批准号:
    1004003
  • 财政年份:
    2010
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Standard Grant
Research in Classical Minimal Surface Theory
经典极小曲面理论研究
  • 批准号:
    0703213
  • 财政年份:
    2007
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Standard Grant
Research in Differential Geometry and Topology
微分几何与拓扑研究
  • 批准号:
    0104044
  • 财政年份:
    2001
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Standard Grant
Research in Differential Geometry and Topology
微分几何与拓扑研究
  • 批准号:
    9803206
  • 财政年份:
    1998
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Research in Differential Geometry and Topology
数学科学:微分几何和拓扑研究
  • 批准号:
    9505101
  • 财政年份:
    1995
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Research in Differential Geometry andTopology
数学科学:微分几何和拓扑学研究
  • 批准号:
    9204535
  • 财政年份:
    1992
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Research in Differential Geometry andTopology
数学科学:微分几何和拓扑学研究
  • 批准号:
    8900285
  • 财政年份:
    1989
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Research In Differential Geometry andTopology
数学科学:微分几何和拓扑学研究
  • 批准号:
    8611574
  • 财政年份:
    1986
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Geometric Surfaces in Riemannian 3-Manifolds
数学科学:黎曼 3 流形中的几何曲面
  • 批准号:
    8414330
  • 财政年份:
    1984
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Continuing grant

相似海外基金

Foundations of Classical and Quantum Verifiable Computing
经典和量子可验证计算的基础
  • 批准号:
    MR/X023583/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Fellowship
Mixed Quantum-Classical Semiclassical Theory: Finding Reaction Paths in Open Quantum Systems
混合量子经典半经典理论:寻找开放量子系统中的反应路径
  • 批准号:
    2404809
  • 财政年份:
    2024
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Standard Grant
Understanding Emission, Absorption and Energy Transfer Involving Classical and Quantum Light Interacting with Molecules
了解涉及经典光和量子光与分子相互作用的发射、吸收和能量转移
  • 批准号:
    2347622
  • 财政年份:
    2024
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Standard Grant
Collaborative Research: The impact of instruction on student thinking about measurement in classical and quantum mechanics experiments
合作研究:教学对学生思考经典和量子力学实验中的测量的影响
  • 批准号:
    2336135
  • 财政年份:
    2024
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Standard Grant
CAREER: Symmetries and Classical Physics in Machine Learning for Science and Engineering
职业:科学与工程机器学习中的对称性和经典物理学
  • 批准号:
    2339682
  • 财政年份:
    2024
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Continuing Grant
A Polytopal View of Classical Polynomials
经典多项式的多面观
  • 批准号:
    2348676
  • 财政年份:
    2024
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
  • 批准号:
    2423960
  • 财政年份:
    2024
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Standard Grant
Collective Quantum Thermodynamics: Quantum vs Classical
集体量子热力学:量子与经典
  • 批准号:
    MR/Y003845/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Fellowship
The Cultural Legacies of the British Empire: Classical Music's Colonial History (1750-1900)
大英帝国的文化遗产:古典音乐的殖民历史(1750-1900)
  • 批准号:
    MR/X03559X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Fellowship
FET: SHF: Small: A Verification Framework for Hybrid Classical and Quantum Protocols (VeriHCQ)
FET:SHF:小型:混合经典和量子协议的验证框架 (VeriHCQ)
  • 批准号:
    2330974
  • 财政年份:
    2024
  • 资助金额:
    $ 10.2万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了