Research in the Geometry of Minimal and Constant Mean Curvature Surfaces
最小且恒定平均曲率曲面的几何研究
基本信息
- 批准号:1309236
- 负责人:
- 金额:$ 15.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-15 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS 1309236, Principal Investigator: William H. Meeks The researcher will study the geometry, asymptotic behavior, conformal structure and topology of properly embedded minimal and constant mean curvature surfaces in three-dimensional Euclidean space, and more generally, in simply connected homogeneous three-manifolds X. One goal is to classify constant mean curvature spheres in such spaces X and to investigate when they are embedded and if they always represent solutions to isoperimetric problems in X. Another goal of the proposal is to classify the asymptotic behavior of complete embedded constant mean curvature surfaces of finite topology in three-dimensional Euclidean space, and more generally, in homogeneous three-manifolds. Theoretical techniques concerning removable singularities, compactness, regularity and convergence of sequences of embedded minimal and constant mean curvature surfaces will be investigated as well. A final goal is to understand the existence/nonexistence problem for complete, bounded embedded minimal and constant mean curvature surfaces in Euclidean three-space and in other three-dimensional spaces.Classical minimal and constant mean curvature surface theory has its roots in 18 th and 19 th century mathematics. Minimal surfaces are the first important two-dimensional examples of what is called the calculus of variations, a subject first described by Euler around 1735; constant mean curvature surfaces were first studied by Delaunay in 1835 and they also represent important examples in the calculus of variations. Physically minimal surfaces can be modeled as soap films on wires or by surfaces of least-area relative to their boundaries; physically constant mean curvature surfaces can be modeled as soap films on wires with a constant pressure difference on each side. Minimal surfaces play an important role as a tool in the study of three-dimensional topology and geometry. The research in this proposal concerns global and local properties of embedded minimal and constant mean curvature surfaces and possible applications of these results to basic research in three-dimensional topology and geometry.
摘要奖:DMS 1309236,主要研究者:William H. Meeks研究人员将研究三维欧氏空间中适当嵌入的最小和常平均曲率曲面的几何,渐近行为,共形结构和拓扑,更一般地说,在单连通齐次三维流形X中。一个目标是在这样的空间X中对常平均曲率球进行分类,并研究它们何时被嵌入,以及它们是否总是代表X中等周问题的解。另一个目标的建议是分类的渐近行为完全嵌入常平均曲率曲面的有限拓扑在三维欧氏空间,更一般地说,在齐次三维流形。理论技术有关的可去除的奇异性,紧性,规则性和收敛性的嵌入最小和常平均曲率曲面的序列将被调查,以及。最后一个目标是理解欧氏空间和其他三维空间中的完全的、有界的嵌入的极小和常平均曲率曲面的存在/不存在问题。经典的极小和常平均曲率曲面理论起源于18和19世纪的数学。极小曲面是所谓的变分法的第一个重要的二维例子,这一主题首先由欧拉在1735年左右描述;常平均曲率曲面首先由德劳内在1835年研究,它们也是变分法的重要例子。物理上最小的表面可以被建模为电线上的肥皂膜或相对于其边界的最小面积的表面;物理上恒定的平均曲率表面可以被建模为电线上的肥皂膜,每侧具有恒定的压力差。极小曲面作为一种工具在三维拓扑和几何的研究中起着重要的作用。在这个建议中的研究涉及嵌入的最小和常平均曲率曲面的全局和局部性质,以及这些结果在三维拓扑和几何基础研究中的可能应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Meeks其他文献
MP67-12 PEYRONIE'S DISEASE IS ASSOCIATED WITH INCREASED IMMUNE REACTIVITY: ANALYSIS OF UNITED STATES CLAIMS DATA
- DOI:
10.1016/j.juro.2018.02.2196 - 发表时间:
2018-04-01 - 期刊:
- 影响因子:
- 作者:
Taylor P. Kohn;Daniel Pichardo;Katherine M. Rodriguez;William Meeks;Larry I. Lipshultz;Alexander W. Pastuszak - 通讯作者:
Alexander W. Pastuszak
MP96-14 ANALYSIS OF NATIONAL TRENDS IN HOSPITAL ACQUIRED CONDITIONS FOLLOWING MAJOR UROLOGIC SURGERY BEFORE AND AFTER IMPLEMENTATION OF THE HOSPITAL ACQUIRED CONDITION REDUCTION PROGRAM
- DOI:
10.1016/j.juro.2017.02.3037 - 发表时间:
2017-04-01 - 期刊:
- 影响因子:
- 作者:
Temitope Rude;Nicholas Donin;Matthew Cohn;William Meeks;Scott Gulig;James Wysock;Danil Makarov;Marc Bjurlin - 通讯作者:
Marc Bjurlin
INSANE IN THE MEMBRANE: THE ROLE OF CATHETERIZATION IN THE DIAGNOSIS OF A SUBAORTIC MEMBRANE
- DOI:
10.1016/s0735-1097(24)06091-1 - 发表时间:
2024-04-02 - 期刊:
- 影响因子:
- 作者:
Rebecca Kocak;Christina Romano;Cara Joseph;Meer Fakhry;William Meeks;Ninad M. Zaman;Muhammad Mohyuddin;Hata Mujadzic;Gabrielle Rhinehart;Patrick Anthony Xavier Hall - 通讯作者:
Patrick Anthony Xavier Hall
YOU UNDERESTIMATE MY POWER: EMPHASIZING DYSSYNCHRONY IN THE ERA OF SYNCHRONY FOR HCM PATIENTS
- DOI:
10.1016/s0735-1097(24)05664-x - 发表时间:
2024-04-02 - 期刊:
- 影响因子:
- 作者:
Christina Romano;Dominic J. Vacca;William Meeks;Ninad M. Zaman;Rebecca Kocak;Muhammad Mohyuddin;Hata Mujadzic;Gabrielle Rhinehart;Meer Fakhry - 通讯作者:
Meer Fakhry
FORGOTTEN CAUSE OF CHEST PAIN DUE TO A RARE COMPLICATION OF A COMMON PROCEDURE
- DOI:
10.1016/s0735-1097(23)04408-x - 发表时间:
2023-03-07 - 期刊:
- 影响因子:
- 作者:
Muhammad Mohyuddin;Ninad M. Zaman;Meer Fakhry;Rebecca Kocak;William Meeks;George Prousi;Patrick Anthony Xavier Hall - 通讯作者:
Patrick Anthony Xavier Hall
William Meeks的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Meeks', 18)}}的其他基金
Research in the Geometry of Minimal and Constant Mean Curvature Surfaces
最小且恒定平均曲率曲面的几何研究
- 批准号:
1004003 - 财政年份:2010
- 资助金额:
$ 15.91万 - 项目类别:
Standard Grant
Research in Classical Minimal Surface Theory
经典极小曲面理论研究
- 批准号:
0703213 - 财政年份:2007
- 资助金额:
$ 15.91万 - 项目类别:
Standard Grant
Research in Classical Minimal Surface Theory
经典极小曲面理论研究
- 批准号:
0405836 - 财政年份:2004
- 资助金额:
$ 15.91万 - 项目类别:
Standard Grant
Research in Differential Geometry and Topology
微分几何与拓扑研究
- 批准号:
0104044 - 财政年份:2001
- 资助金额:
$ 15.91万 - 项目类别:
Standard Grant
Research in Differential Geometry and Topology
微分几何与拓扑研究
- 批准号:
9803206 - 财政年份:1998
- 资助金额:
$ 15.91万 - 项目类别:
Standard Grant
Mathematical Sciences: Research in Differential Geometry and Topology
数学科学:微分几何和拓扑研究
- 批准号:
9505101 - 财政年份:1995
- 资助金额:
$ 15.91万 - 项目类别:
Continuing Grant
Mathematical Sciences: Research in Differential Geometry andTopology
数学科学:微分几何和拓扑学研究
- 批准号:
9204535 - 财政年份:1992
- 资助金额:
$ 15.91万 - 项目类别:
Continuing Grant
Mathematical Sciences: Research in Differential Geometry andTopology
数学科学:微分几何和拓扑学研究
- 批准号:
8900285 - 财政年份:1989
- 资助金额:
$ 15.91万 - 项目类别:
Continuing Grant
Mathematical Sciences: Research In Differential Geometry andTopology
数学科学:微分几何和拓扑学研究
- 批准号:
8611574 - 财政年份:1986
- 资助金额:
$ 15.91万 - 项目类别:
Continuing Grant
Mathematical Sciences: Geometric Surfaces in Riemannian 3-Manifolds
数学科学:黎曼 3 流形中的几何曲面
- 批准号:
8414330 - 财政年份:1984
- 资助金额:
$ 15.91万 - 项目类别:
Continuing grant
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Differential Geometry and Minimal Surfaces
微分几何和最小曲面
- 批准号:
2305255 - 财政年份:2023
- 资助金额:
$ 15.91万 - 项目类别:
Standard Grant
Minimal submanifolds in Riemannian geometry
黎曼几何中的最小子流形
- 批准号:
RGPIN-2020-04225 - 财政年份:2022
- 资助金额:
$ 15.91万 - 项目类别:
Discovery Grants Program - Individual
Minimal Filling Estimates in Riemannian Geometry
黎曼几何中的最小填充估计
- 批准号:
567948-2022 - 财政年份:2022
- 资助金额:
$ 15.91万 - 项目类别:
Postgraduate Scholarships - Doctoral
Minimal submanifolds in Riemannian geometry
黎曼几何中的最小子流形
- 批准号:
RGPIN-2020-04225 - 财政年份:2021
- 资助金额:
$ 15.91万 - 项目类别:
Discovery Grants Program - Individual
Minimal submanifolds in Riemannian geometry
黎曼几何中的最小子流形
- 批准号:
RGPIN-2020-04225 - 财政年份:2020
- 资助金额:
$ 15.91万 - 项目类别:
Discovery Grants Program - Individual
Differential Geometry and Minimal Surfaces
微分几何和最小曲面
- 批准号:
2005468 - 财政年份:2020
- 资助金额:
$ 15.91万 - 项目类别:
Continuing Grant
Minimal Submanifolds in Riemannian Geometry
黎曼几何中的最小子流形
- 批准号:
RGPIN-2015-04436 - 财政年份:2019
- 资助金额:
$ 15.91万 - 项目类别:
Discovery Grants Program - Individual
Large Scale Geometry of Scalar Curvature and Minimal Surfaces
标量曲率和最小曲面的大尺度几何
- 批准号:
2016403 - 财政年份:2019
- 资助金额:
$ 15.91万 - 项目类别:
Continuing Grant
Minimal Surfaces in Geometry and Topology
几何和拓扑中的最小曲面
- 批准号:
1906385 - 财政年份:2019
- 资助金额:
$ 15.91万 - 项目类别:
Continuing Grant
From pine cones to minimal surfaces: the geometry and mechanics of morphing bilayers
从松果到最小表面:变形双层的几何和力学
- 批准号:
2123263 - 财政年份:2018
- 资助金额:
$ 15.91万 - 项目类别:
Studentship