Research in Differential Geometry and Topology
微分几何与拓扑研究
基本信息
- 批准号:0104044
- 负责人:
- 金额:$ 6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-08-01 至 2003-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract for DMS - 0104044In this proposal the research will study the geometry, asymptotic behavior, conformal structure and topology of properly embedded minimal surfaces in R3 . One of the main goals of the proposal is to classify all properly embedded minimal surfaces of genus zero and to describe the asymptotic geometry of all finite genus examples. Related theoretical techniques concerning compactness, regularity and convergence of minimal surfaces of locally bounded genus will be investigated as well. One hoped for application of this research is to classify all smooth finite group actions on S3 . Finally the research proposes to prove that Bryant surfaces in hyperbolic three-space are unknotted.Classical minimal surface theory has its roots in 18th and 19th century mathematicsand gives one of the first important examples in what is called the calculus of variations, first described by Euler. Physically minimal surfaces can be modeled locally as soap films on wires or by surfaces of least-area relative to local boundaries. These surfaces play an important role as a tool in the study ofthree-dimensional topology and Riemannian geometry. The research in this proposal concerns global properties of these surfaces and possible applications to basic research in three-dimensional topology and geometry.
摘要DMS -0104044在这个建议中,研究将研究的几何形状,渐近行为,共形结构和拓扑结构的适当嵌入极小曲面在R3。 该建议的主要目标之一是分类所有适当嵌入极小曲面的亏格为零,并描述渐近几何的所有有限亏格的例子。同时也将研究局部有界亏格极小曲面的紧性、正则性和收敛性等相关理论技巧。 希望这项研究的应用是分类所有光滑有限群作用在S3。 经典的极小曲面理论起源于18、19世纪的世纪代数学,并给出了由Euler首先描述的变分法中最重要的例子之一。 物理上的最小曲面可以局部建模为导线上的肥皂膜或相对于局部边界的最小面积曲面。 这些曲面在三维拓扑学和黎曼几何的研究中起着重要的作用。 在这个建议中的研究涉及这些表面的整体性质和可能的应用,在三维拓扑和几何的基础研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Meeks其他文献
MP67-12 PEYRONIE'S DISEASE IS ASSOCIATED WITH INCREASED IMMUNE REACTIVITY: ANALYSIS OF UNITED STATES CLAIMS DATA
- DOI:
10.1016/j.juro.2018.02.2196 - 发表时间:
2018-04-01 - 期刊:
- 影响因子:
- 作者:
Taylor P. Kohn;Daniel Pichardo;Katherine M. Rodriguez;William Meeks;Larry I. Lipshultz;Alexander W. Pastuszak - 通讯作者:
Alexander W. Pastuszak
MP96-14 ANALYSIS OF NATIONAL TRENDS IN HOSPITAL ACQUIRED CONDITIONS FOLLOWING MAJOR UROLOGIC SURGERY BEFORE AND AFTER IMPLEMENTATION OF THE HOSPITAL ACQUIRED CONDITION REDUCTION PROGRAM
- DOI:
10.1016/j.juro.2017.02.3037 - 发表时间:
2017-04-01 - 期刊:
- 影响因子:
- 作者:
Temitope Rude;Nicholas Donin;Matthew Cohn;William Meeks;Scott Gulig;James Wysock;Danil Makarov;Marc Bjurlin - 通讯作者:
Marc Bjurlin
INSANE IN THE MEMBRANE: THE ROLE OF CATHETERIZATION IN THE DIAGNOSIS OF A SUBAORTIC MEMBRANE
- DOI:
10.1016/s0735-1097(24)06091-1 - 发表时间:
2024-04-02 - 期刊:
- 影响因子:
- 作者:
Rebecca Kocak;Christina Romano;Cara Joseph;Meer Fakhry;William Meeks;Ninad M. Zaman;Muhammad Mohyuddin;Hata Mujadzic;Gabrielle Rhinehart;Patrick Anthony Xavier Hall - 通讯作者:
Patrick Anthony Xavier Hall
MP33-07 QUALITY OF LIFE OUTCOMES AFTER ROBOTIC SACROCOLOPEXY FOR THE MANAGEMENT OF PELVIC ORGAN PROLAPSE
- DOI:
10.1016/j.juro.2018.02.1078 - 发表时间:
2018-04-01 - 期刊:
- 影响因子:
- 作者:
Annah Vollstedt;Paholo Barboglio;William Meeks;Veronica Triaca - 通讯作者:
Veronica Triaca
YOU UNDERESTIMATE MY POWER: EMPHASIZING DYSSYNCHRONY IN THE ERA OF SYNCHRONY FOR HCM PATIENTS
- DOI:
10.1016/s0735-1097(24)05664-x - 发表时间:
2024-04-02 - 期刊:
- 影响因子:
- 作者:
Christina Romano;Dominic J. Vacca;William Meeks;Ninad M. Zaman;Rebecca Kocak;Muhammad Mohyuddin;Hata Mujadzic;Gabrielle Rhinehart;Meer Fakhry - 通讯作者:
Meer Fakhry
William Meeks的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Meeks', 18)}}的其他基金
Research in the Geometry of Minimal and Constant Mean Curvature Surfaces
最小且恒定平均曲率曲面的几何研究
- 批准号:
1309236 - 财政年份:2013
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Research in the Geometry of Minimal and Constant Mean Curvature Surfaces
最小且恒定平均曲率曲面的几何研究
- 批准号:
1004003 - 财政年份:2010
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Research in Classical Minimal Surface Theory
经典极小曲面理论研究
- 批准号:
0703213 - 财政年份:2007
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Research in Classical Minimal Surface Theory
经典极小曲面理论研究
- 批准号:
0405836 - 财政年份:2004
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Research in Differential Geometry and Topology
微分几何与拓扑研究
- 批准号:
9803206 - 财政年份:1998
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Mathematical Sciences: Research in Differential Geometry and Topology
数学科学:微分几何和拓扑研究
- 批准号:
9505101 - 财政年份:1995
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
Mathematical Sciences: Research in Differential Geometry andTopology
数学科学:微分几何和拓扑学研究
- 批准号:
9204535 - 财政年份:1992
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
Mathematical Sciences: Research in Differential Geometry andTopology
数学科学:微分几何和拓扑学研究
- 批准号:
8900285 - 财政年份:1989
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
Mathematical Sciences: Research In Differential Geometry andTopology
数学科学:微分几何和拓扑学研究
- 批准号:
8611574 - 财政年份:1986
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
Mathematical Sciences: Geometric Surfaces in Riemannian 3-Manifolds
数学科学:黎曼 3 流形中的几何曲面
- 批准号:
8414330 - 财政年份:1984
- 资助金额:
$ 6万 - 项目类别:
Continuing grant
相似海外基金
Canada Research Chair In Differential Geometry And Topology
加拿大微分几何和拓扑研究主席
- 批准号:
CRC-2014-00070 - 财政年份:2021
- 资助金额:
$ 6万 - 项目类别:
Canada Research Chairs
Canada Research Chair in Differential Geometry and Topology
加拿大微分几何和拓扑研究主席
- 批准号:
CRC-2014-00070 - 财政年份:2020
- 资助金额:
$ 6万 - 项目类别:
Canada Research Chairs
Research in General Relativity and Differential Geometry
广义相对论与微分几何研究
- 批准号:
554129-2020 - 财政年份:2020
- 资助金额:
$ 6万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Collaborative Research: Asymptotic Geometry and Analysis of Stochastic Partial Differential Equations
合作研究:渐近几何与随机偏微分方程分析
- 批准号:
1855185 - 财政年份:2019
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Canada Research Chair in Differential Geometry and Topology
加拿大微分几何和拓扑研究主席
- 批准号:
CRC-2014-00070 - 财政年份:2019
- 资助金额:
$ 6万 - 项目类别:
Canada Research Chairs
Collaborative Research: Asymptotic Geometry and Analysis of Stochastic Partial Differential Equations
合作研究:渐近几何与随机偏微分方程分析
- 批准号:
1855439 - 财政年份:2019
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Collaborative Research: Derived Differential Geometry and Field Theory
合作研究:派生微分几何和场论
- 批准号:
1812049 - 财政年份:2018
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Canada Research Chair in Differential Geometry and Topology
加拿大微分几何和拓扑研究主席
- 批准号:
CRC-2014-00070 - 财政年份:2018
- 资助金额:
$ 6万 - 项目类别:
Canada Research Chairs
Collaborative Research: Derived Differential Geometry and Field Theory
合作研究:派生微分几何和场论
- 批准号:
1811864 - 财政年份:2018
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Canada Research Chair in Differential Geometry and Topology
加拿大微分几何和拓扑研究主席
- 批准号:
CRC-2014-00070 - 财政年份:2017
- 资助金额:
$ 6万 - 项目类别:
Canada Research Chairs