Mathematical Analysis of Parametrically Excited Hamiltonian Systems with Applications in Quantum Physics, Nonlinear Optics and Wave Propagation in Random Media
参数激发哈密顿系统的数学分析及其在量子物理、非线性光学和随机介质中波传播中的应用
基本信息
- 批准号:0405921
- 负责人:
- 金额:$ 4.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-08-01 至 2006-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The PI will study the long time behavior of solutions of dispersive partial differential equations under time dependent perturbations. The focus will be on the Linear and Nonlinear Schroedinger Equation in the regimes in which it supports bound states (periodic in time, localized in space solutions). The perturbation is expected to redistribute the energy among the bound state and transfer part of it to radiation. A rigorous description of this process will be sought. For this purpose the PI will develop novel mathematical techniques for studying the evolution of both the radiation field and the bound states. The tools are expected to generalize to other dispersive equations like Klein-Gordon, Sine-Gordon and Korteweg - de Vries.The Schroedinger Equation is a well established model for a variety of physical phenomena and engineering processes. For example, dispersion managed optical fibers used in high bit rate telecommunications consist of concatenated pieces of fiber with different material properties. As the light pulses pass through them they suffer two main transformations. On one hand they are kept from spreading out which is desirable. On the other hand they loose energy to radiation. Striking the right balance between the two effects is a design problem to which the PI plans to contribute. The second example is related to the new ideas on generating matter waves out of particles in a special phase (Bose-Einstein Condensates) by controlled variation of their environment. The stability and long time behavior of these waves is not well understood and will be investigated in the project. The third example concerns radar detection through fluctuating media. On one hand, due to the random fluctuations, the signal reflected by the target that reaches the detector tends to contain more information compared to a signal that propagates through a stationary medium. On the other hand, the same fluctuations tend to radiate out of the environment both the direct and reflected signal. A better qualitative and quantitative understanding of the second phenomena is one of the goals of this project.
PI将研究时间相关扰动下色散偏微分方程解的长时间行为。焦点将集中在线性和非线性薛定谔方程支持束缚态(时间周期,空间定域解)的区域内。这种微扰预计会在束缚态之间重新分配能量,并将部分能量转移到辐射中。将寻求对这一过程的严格描述。为此,PI将开发新的数学技术来研究辐射场和束缚态的演化。这些工具有望推广到其他色散方程,如Klein-Gordon,Sine-Gordon和Korteweg-de Vries。薛定谔方程是一个针对各种物理现象和工程过程的成熟模型。例如,用于高比特率通信的色散管理光纤由具有不同材料特性的串联光纤组成。当光脉冲穿过它们时,它们经历了两次主要的转变。一方面,它们被阻止扩散,这是可取的。另一方面,它们将能量释放给辐射。在这两种效果之间取得适当的平衡是PI计划要解决的设计问题。第二个例子是关于通过控制环境的变化从特殊相中的粒子(玻色-爱因斯坦凝聚体)中产生物质波的新想法。这些波的稳定性和长时间行为还不是很清楚,将在项目中进行研究。第三个例子涉及通过波动介质的雷达探测。一方面,由于随机波动,与通过固定介质传播的信号相比,到达探测器的目标反射的信号往往包含更多的信息。另一方面,同样的波动往往会从环境中辐射出来,无论是直接信号还是反射信号。更好地定性和定量地了解第二种现象是本项目的目标之一。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eduard-Wilhelm Kirr其他文献
Eduard-Wilhelm Kirr的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eduard-Wilhelm Kirr', 18)}}的其他基金
Stability in nonlinear wave equations
非线性波动方程的稳定性
- 批准号:
0707800 - 财政年份:2007
- 资助金额:
$ 4.74万 - 项目类别:
Standard Grant
Mathematical Analysis of Parametrically Excited Hamiltonian Systems with Applications in Quantum Physics, Nonlinear Optics and Wave Propagation in Random Media
参数激发哈密顿系统的数学分析及其在量子物理、非线性光学和随机介质中波传播中的应用
- 批准号:
0603722 - 财政年份:2005
- 资助金额:
$ 4.74万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 4.74万 - 项目类别:
Continuing Grant
Conference: Southern California Geometric Analysis Seminar
会议:南加州几何分析研讨会
- 批准号:
2406732 - 财政年份:2024
- 资助金额:
$ 4.74万 - 项目类别:
Standard Grant
Design and Analysis of Structure Preserving Discretizations to Simulate Pattern Formation in Liquid Crystals and Ferrofluids
模拟液晶和铁磁流体中图案形成的结构保持离散化的设计和分析
- 批准号:
2409989 - 财政年份:2024
- 资助金额:
$ 4.74万 - 项目类别:
Standard Grant
CRII: AF: Efficiently Computing and Updating Topological Descriptors for Data Analysis
CRII:AF:高效计算和更新数据分析的拓扑描述符
- 批准号:
2348238 - 财政年份:2024
- 资助金额:
$ 4.74万 - 项目类别:
Standard Grant
Advances in rational operations in free analysis
自由分析中理性运算的进展
- 批准号:
2348720 - 财政年份:2024
- 资助金额:
$ 4.74万 - 项目类别:
Standard Grant
Testing Theorems in Analytic Function Theory, Harmonic Analysis and Operator Theory
解析函数论、调和分析和算子理论中的检验定理
- 批准号:
2349868 - 财政年份:2024
- 资助金额:
$ 4.74万 - 项目类别:
Standard Grant
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
- 批准号:
2402028 - 财政年份:2024
- 资助金额:
$ 4.74万 - 项目类别:
Standard Grant
Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
- 批准号:
2402555 - 财政年份:2024
- 资助金额:
$ 4.74万 - 项目类别:
Standard Grant
Conference: Pittsburgh Links among Analysis and Number Theory (PLANT)
会议:匹兹堡分析与数论之间的联系 (PLANT)
- 批准号:
2334874 - 财政年份:2024
- 资助金额:
$ 4.74万 - 项目类别:
Standard Grant
NeTS: Small: ML-Driven Online Traffic Analysis at Multi-Terabit Line Rates
NeTS:小型:ML 驱动的多太比特线路速率在线流量分析
- 批准号:
2331111 - 财政年份:2024
- 资助金额:
$ 4.74万 - 项目类别:
Standard Grant