Collaborative Research: Highly Structured Models and Statistical Computation in High-Energy Astrophysics

合作研究:高能天体物理中的高度结构化模型和统计计算

基本信息

  • 批准号:
    0405953
  • 负责人:
  • 金额:
    $ 24.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-08-15 至 2007-07-31
  • 项目状态:
    已结题

项目摘要

Pricipal Investigators: David Van Dyk and Xiao-Li MengInstitutions: UC Riverside and Harvard UniversityCollaborative Research: Highly Structured Models and Statistical Computation in High-Energy AstrophysicsAbstractThe California-Harvard Astrostatistics Collaboration aims to designand implement fully model-based methods of statistical inference tosolve outstanding data analytic problems in high-energyastrophysics. The Collaboration's methods explicitly model thecomplexities of both astronomical sources and the data generationmechanisms inherent in new high-tech instruments and fully utilize theresulting highly structured models in learning about the underlyingastronomical and physical processes. Using these models requiressophisticated scientific computation, advanced methods for statisticalinference, and careful model checking procedures. The PIs of theCollaboration (van Dyk and Meng) both have substantial researchexperience in developing the methods that the Collaboration isextending, employing, and publicizing: inferential and efficientcomputational methods under highly-structured models that involvemultiple levels of latent variables and incomplete data. Such modelsare ideally suited to account for the many physical and instrumentalfilters that compose the data generation mechanism in high-energyastrophysics. The five consultants on the project (Chiang, Connors,Kashyap, Karovska, and Siemiginowska) all have expertise on theinstrumentation and science of high-energy astrophysics, and, all havecollaborated with statisticians in efforts to develop appropriatemethods to address scientific questions. There are two primary impactsof this project: the impact of the development of more reliablestatistical methods on scientific findings in astronomy and the impactof the new statistical inference and computation methods in a widerange of scientific fields. As the Collaboration develops methods anddistributes free software for specific inferential tasks, it alsoeducates the astronomical community as to the benefit of careful useof sophisticated statistical methods. (The Collaboration organizes oneor two special sessions at meetings of the American AstronomicalSociety each year.) It is expected that a fundamental impact of theproposed research will be a more general acceptance and more prevalentuse of appropriate methods among astronomers. Second, theCollaboration is an example of a new mode of statisticalinference. Rather than using off-the-shelf models and methods, it isbecoming ever more feasible to develop application specific modelsthat are designed to account for the particular complexities of aproblem at hand. The Collaboration develops inferential andcomputational methods for handling such multi-level models. Asapplication specific multi-level models become more prevalent, thesemethods will have application throughout the natural, social, andengineering sciences.In recent years, there has been an explosion of new data inobservational high-energy astrophysics. Recently launched orsoon-to-be launched space-based telescopes that are designed to detectand map ultra-violet, X-ray, and gamma-ray electromagnetic emissionare opening a whole new window to study the cosmos. Because theproduction of high-energy electromagnetic emission requirestemperatures of millions of degrees and is an indication of therelease of vast quantities of stored energy, these instruments give acompletely new perspective on the hot and turbulent regions of theuniverse. The new instrumentation allows for very high resolutionimaging, spectral analysis, and time series analysis. The ChandraX-ray Observatory, for example, produces images at least thirty timessharper than any previous X-ray telescope. The complexity of theinstruments, the complexity of the astronomical sources, and thecomplexity of the scientific questions leads to a subtle inferenceproblem that requires sophisticated statistical tools. For example,data are subject to non-uniform censoring, errors in measurement, andbackground contamination. Astronomical sources exhibit complex andirregular spatial structure. Scientists wish to draw conclusions as tothe physical environment and structure of the source, the processesand laws which govern the birth and death of planets, stars, andgalaxies, and ultimately the structure and evolution of theuniverse. Nonetheless little effort has been made to bring thestrength of modern statistical methods to bare on these problems. TheCalifornia-Harvard Astrostatistics Collaboration develops statisticalmethods, computational techniques, and freely available software toaddress outstanding inferential problems in high-energy astrophysics.The methods developed are an example of a new mode of statisticalinference: Rather than using off-the-shelf methods, it is becomingever more feasible to develop methods that are application specificand are designed to account for the particular complexities of aproblem at hand. The inferential and computational methods designed bythe Collaboration for handling such multi-level models haveapplication throughout the natural, social, and engineering sciences.
主要研究者:大卫货车戴克和Xiao-Li Meng机构:加州大学滨江和哈佛大学合作研究:高能天体物理学中的高度结构化模型和统计计算摘要加州-哈佛天体统计学合作旨在设计和实现完全基于模型的统计推断方法,以解决高能天体物理学中突出的数据分析问题。协作的方法明确地模拟了天文学来源和新的高科技仪器固有的数据生成机制的复杂性,并充分利用由此产生的高度结构化的模型来了解基本的天文学和物理过程。使用这些模型需要复杂的科学计算,先进的推理方法和仔细的模型检查程序。协作组的PI(货车戴克和孟)在开发协作组正在扩展、使用和宣传的方法方面都有丰富的研究经验:在涉及多层次潜在变量和不完整数据的高度结构化模型下的推理和有效计算方法。 这样的模型非常适合于解释构成高能天体物理学数据生成机制的许多物理和仪器过滤器。该项目的五名顾问(Chiang,Connors,Kashyap,Karovska和Siemiginowska)都具有高能天体物理学仪器和科学方面的专业知识,并且都与统计学家合作,努力开发适当的方法来解决科学问题。这个项目有两个主要的影响:一是发展更可靠的统计方法对天文学科学发现的影响,二是新的统计推断和计算方法对更广泛的科学领域的影响。随着协作组为特定的推理任务开发方法和分发免费软件,它也教育天文学界谨慎使用复杂的统计方法。(The合作组织每年在美国天文学会的会议上组织一到两次特别会议。预计这项研究的基本影响将是天文学家更普遍地接受和更普遍地使用适当的方法。第二,协作是一种新的推理模式。而不是使用现成的模型和方法,它正变得越来越可行,以开发应用程序的具体模型,旨在占手头的问题的特殊复杂性。 协作开发推理和计算方法来处理这样的多层次模型。随着应用特定的多层次模型变得越来越普遍,这些方法将在整个自然,社会和工程科学中得到应用。近年来,在观测高能天体物理学方面出现了新数据的爆炸。最近发射或即将发射的天基望远镜旨在探测和绘制紫外线,X射线和伽马射线电磁辐射,为研究宇宙打开了一扇全新的窗口。由于产生高能电磁辐射需要数百万度的温度,并且是释放大量储存能量的指示,因此这些仪器为宇宙中炎热和动荡的区域提供了全新的视角。新仪器允许非常高的分辨率成像,光谱分析和时间序列分析。例如,ChandraX射线天文台产生的图像比以前任何X射线望远镜都清晰至少30倍。 仪器的复杂性,天文学来源的复杂性,以及科学问题的复杂性导致了一个微妙的推理问题,需要复杂的统计工具。例如,数据会受到非均匀删失、测量误差和背景污染的影响。天文源具有复杂的、不规则的空间结构。科学家们希望得出的结论,以物理环境和结构的来源,过程和法律的诞生和死亡的行星,恒星和星系,并最终的结构和演变的宇宙。尽管如此,很少有人努力使现代统计方法的力量暴露在这些问题上。加州-哈佛天体统计学合作组织开发了计算方法、计算技术和免费软件,以解决高能天体物理学中突出的推论问题。开发的方法是计算推论新模式的一个例子:与使用现成的方法相比,开发针对具体应用的、旨在解决手头问题的特殊复杂性的方法越来越可行。协作组设计的用于处理这种多层次模型的推理和计算方法在整个自然科学、社会科学和工程科学中都有应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiao-Li Meng其他文献

Pacemaker implantation for treating migraine-like headache secondary to cardiac arrhythmia: A case report
植入起搏器治疗心律失常继发偏头痛样头痛:一例报告
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Yu-Hong Man;Xiao-Li Meng;Ting-Min Yu;Gang Yao
  • 通讯作者:
    Gang Yao
The Analysis of Non-Significant Feature Data Mining in Big Data Environments
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiao-Li Meng
  • 通讯作者:
    Xiao-Li Meng

Xiao-Li Meng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiao-Li Meng', 18)}}的其他基金

DMS-EPSRC Collaborative Research: Advancing Statistical Foundations and Frontiers for and from Emerging Astronomical Data Challenges
DMS-EPSRC 合作研究:为新出现的天文数据挑战推进统计基础和前沿
  • 批准号:
    2113615
  • 财政年份:
    2021
  • 资助金额:
    $ 24.98万
  • 项目类别:
    Standard Grant
Probabilistic Underpinning of Imprecise Probability and Statistical Learning with Low-Resolution Information
不精确概率的概率基础和低分辨率信息的统计学习
  • 批准号:
    1812063
  • 财政年份:
    2018
  • 资助金额:
    $ 24.98万
  • 项目类别:
    Standard Grant
Collaborative Research: Highly Principled Data Science for Multi-Domain Astronomical Measurements and Analysis
合作研究:用于多领域天文测量和分析的高度原理性数据科学
  • 批准号:
    1811308
  • 财政年份:
    2018
  • 资助金额:
    $ 24.98万
  • 项目类别:
    Standard Grant
Collaborative Research: Principled Science-Driven Methods for Massive, Intricate, and Multifaceted Data in Astronomy and Astrophysics
协作研究:天文学和天体物理学中海量、复杂和多方面数据的原则性科学驱动方法
  • 批准号:
    1513492
  • 财政年份:
    2015
  • 资助金额:
    $ 24.98万
  • 项目类别:
    Continuing Grant
Collaborative Research: Advanced Statistical Methods and Computation for Emerging Challenges in Astrophysics and Astronomy
合作研究:应对天体物理学和天文学中新挑战的先进统计方法和计算
  • 批准号:
    1208791
  • 财政年份:
    2012
  • 资助金额:
    $ 24.98万
  • 项目类别:
    Continuing Grant
Building a theoretical and methodological framework for collaborative statistical inference and learning: multi-party and multiphase paradigms
构建协作统计推理和学习的理论和方法框架:多方和多阶段范式
  • 批准号:
    1208799
  • 财政年份:
    2012
  • 资助金额:
    $ 24.98万
  • 项目类别:
    Continuing Grant
Collaborative Research: New MCMC-enabled Bayesian Methods for Complex Data and Computer Models Applied in Astronomy
协作研究:用于天文学中应用的复杂数据和计算机模型的新的 MCMC 支持贝叶斯方法
  • 批准号:
    0907185
  • 财政年份:
    2009
  • 资助金额:
    $ 24.98万
  • 项目类别:
    Standard Grant
CMG Collaborative Research: Statistical Evaluation of Model-Based Uncertainties Leading to Improved Climate Change Projections at Regional to Local Scales
CMG 合作研究:基于模型的不确定性的统计评估可改善区域到地方尺度的气候变化预测
  • 批准号:
    0724522
  • 财政年份:
    2007
  • 资助金额:
    $ 24.98万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Overcomplete Representations with Incomplete Data: Theory, Algorithms, and Signal Processing Applications
FRG:协作研究:不完整数据的过完整表示:理论、算法和信号处理应用
  • 批准号:
    0652743
  • 财政年份:
    2007
  • 资助金额:
    $ 24.98万
  • 项目类别:
    Continuing Grant
Practical Perfect Sampling for Bayesian Computation and Engineering and Financial Applications
贝叶斯计算、工程和金融应用的实用完美采样
  • 批准号:
    0505595
  • 财政年份:
    2005
  • 资助金额:
    $ 24.98万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于多模态数据的高度近视中的青光眼分类方法研究
  • 批准号:
    2025JJ50369
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
GLRA2功能缺失影响视网膜发育导致高度近视的机制研究
  • 批准号:
    2025JJ80300
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
高度近视致病基因鉴定及SOX2在近视中功能研究
  • 批准号:
    2025JJ70427
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
顾及时序变化特征的森林冠层高度分区 反演方法研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
淡水鱼高度不饱和脂肪酸合成的调控机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于高度可调谐纳米酶信号放大策略构建超灵敏电化学体外诊断生物传感器的研究
  • 批准号:
    KLY25H200011
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
局麻侧入路双通道法用于经皮内镜下髓核摘除术治疗高度游离型腰椎间盘突出症的临床应用研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
CHST5 在高度近视发生中的机制研究
  • 批准号:
    2024JJ9365
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
眼球壁内外压力环境对高度近视后巩膜形态的影响及其机 制研究
  • 批准号:
    2024JJ9022
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
SOX5单核苷酸多态性抑制CDK6活性在高度近视和阿尔兹海默病中的机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Collaborative Research: Highly Compact, Multi-port, GaN-Based Grid-Forming Inverter
合作研究:高度紧凑、多端口、基于 GaN 的并网逆变器
  • 批准号:
    2227160
  • 财政年份:
    2023
  • 资助金额:
    $ 24.98万
  • 项目类别:
    Standard Grant
Collaborative Research: PM: High-Z Highly Charged Ions Probing Nuclear Charge Radii, QED, and the Standard Model
合作研究:PM:高阻抗高带电离子探测核电荷半径、QED 和标准模型
  • 批准号:
    2309273
  • 财政年份:
    2023
  • 资助金额:
    $ 24.98万
  • 项目类别:
    Standard Grant
Collaborative Research: GEO-CM: The occurrences of the rare earth elements in highly weathered sedimentary rocks, Georgia kaolins.
合作研究:GEO-CM:强风化沉积岩、乔治亚高岭土中稀土元素的出现。
  • 批准号:
    2327660
  • 财政年份:
    2023
  • 资助金额:
    $ 24.98万
  • 项目类别:
    Standard Grant
Collaborative Research: CCSS: Hierarchical Federated Learning over Highly-Dense and Overlapping NextG Wireless Deployments: Orchestrating Resources for Performance
协作研究:CCSS:高密度和重叠的 NextG 无线部署的分层联合学习:编排资源以提高性能
  • 批准号:
    2319780
  • 财政年份:
    2023
  • 资助金额:
    $ 24.98万
  • 项目类别:
    Standard Grant
Collaborative Research: CCSS: Hierarchical Federated Learning over Highly-Dense and Overlapping NextG Wireless Deployments: Orchestrating Resources for Performance
协作研究:CCSS:高密度和重叠的 NextG 无线部署的分层联合学习:编排资源以提高性能
  • 批准号:
    2319781
  • 财政年份:
    2023
  • 资助金额:
    $ 24.98万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Knowledge discovery from highly heterogeneous, sparse and private data in biomedical informatics
合作研究:III:中:生物医学信息学中高度异构、稀疏和私有数据的知识发现
  • 批准号:
    2312862
  • 财政年份:
    2023
  • 资助金额:
    $ 24.98万
  • 项目类别:
    Standard Grant
Collaborative Research: Highly Compact, Multi-port, GaN-Based Grid-Forming Inverter
合作研究:高度紧凑、多端口、基于 GaN 的并网逆变器
  • 批准号:
    2227161
  • 财政年份:
    2023
  • 资助金额:
    $ 24.98万
  • 项目类别:
    Standard Grant
Collaborative Research: GEO-CM: The occurrences of the rare earth elements in highly weathered sedimentary rocks, Georgia kaolins.
合作研究:GEO-CM:强风化沉积岩、乔治亚高岭土中稀土元素的出现。
  • 批准号:
    2327659
  • 财政年份:
    2023
  • 资助金额:
    $ 24.98万
  • 项目类别:
    Standard Grant
Collaborative Research: Advanced and Highly Integrated Power Conversion Systems for Grid Stability and Resiliency
合作研究:先进且高度集成的电力转换系统,以实现电网稳定性和弹性
  • 批准号:
    2403660
  • 财政年份:
    2023
  • 资助金额:
    $ 24.98万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Knowledge discovery from highly heterogeneous, sparse and private data in biomedical informatics
合作研究:III:中:生物医学信息学中高度异构、稀疏和私有数据的知识发现
  • 批准号:
    2312863
  • 财政年份:
    2023
  • 资助金额:
    $ 24.98万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了