Practical Perfect Sampling for Bayesian Computation and Engineering and Financial Applications
贝叶斯计算、工程和金融应用的实用完美采样
基本信息
- 批准号:0505595
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-01 至 2008-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This is a comprehensive research project aimed at making perfect or exact sampling a more practical tool for common Bayesian modeling, as well as for engineering and financial applications. Key reasons for the current limitation of exact sampling include the non-applicability of available algorithms because they operate under assumptions that are not present (such as monotonicity or compact spaces) or assume elements that are not available (such as suitable ``bounding chains''), and the fact that many proposed perfect sampling algorithms take too long or too much memory to be practical beyond certain ``stylized'' applications. The investigators propose to take full advantage of specific problem structures arising in common applications to enhance the performance of exact simulation algorithms. More precisely, in the context of Bayesian computations, the investigators study the idea of data augmentation and multi-shift/scaling couplers to implement and to speed up perfect sampling algorithms for a number of common Bayesian models. The investigators also propose a new exact simulation algorithm that is suitable for applications in stochastic modeling (as in the contexts of engineering and finance), particularly for distributions that are solutions of fixed point stochastic equations. In addition, the investigators study a general procedure to implement a regeneration-based exact simulation algorithm. Finally, the investigators analyze related methods, such as ``nearly perfect sampling", which by allowing a known and controlled error term, can potentially provide considerable gain in terms of both speed and applicability.Markov chain Monte Carlo (MCMC) is a class of very popular methods for scientific computation, and Perfect Sampling is a subclass of MCMC methods that aim to deliver more accurate results. The price one pays for this better accuracy is that the construction of a Perfect Sampling algorithm is typically a difficult task. The main purpose of this proposal is to study practical strategies for reducing such difficulties and thereby to make Perfect Sampling a more practical tool than currently it is. The research activities on perfect sampling described by the investigators focus on widely used models in statistical inference, production and manufacturing systems and financial econometrics. Therefore, the research plan that the investigators propose can have a substantial impact in a great variety of applications in Statistics, Industrial Engineering and Finance. The proposed research activities will also greatly advance the general knowledge and understanding of the applicability of perfect sampling in practice thereby addressing a key problem in the MCMC methodology. The proposed activities will have broad impact in both statistical computation practice and theory, via both research and associated teaching and advising due to the direct involvement of student research assistants and via seminars and publications. The investigators will also make every effort possible to recruit the best research assistants who at the same time will also enhance diversity in their general research environment.
这是一个全面的研究项目,旨在使完美或精确的采样成为普通贝叶斯建模以及工程和金融应用的更实用的工具。目前限制精确采样的主要原因包括现有算法的不适用性,因为它们是在不存在的假设下操作的(例如单调性或紧空间)或假设不可用的元素(例如合适的“绑定链”),以及许多提出的完美采样算法需要太长或太多的存储器,以至于超出某些“风格化”应用的实用性。研究人员建议充分利用常见应用中出现的特定问题结构,以提高精确仿真算法的性能。更确切地说,在贝叶斯计算的背景下,研究人员研究了数据增强和多移位/缩放耦合器的想法,以实现和加速许多常见贝叶斯模型的完美采样算法。研究人员还提出了一种新的精确模拟算法,该算法适用于随机建模(如工程和金融领域),特别是不动点随机方程解的分布。此外,研究人员研究了一个一般的程序来实现基于再生的精确模拟算法。最后,研究人员分析了相关的方法,如“近乎完美的抽样”,通过允许已知和受控的误差项,可以在速度和适用性方面提供相当大的增益。马尔可夫链蒙特卡罗(MCMC)是一类非常流行的科学计算方法,完美抽样是MCMC方法的一个子类,旨在提供更准确的结果。这种更好的精度所付出的代价是,完美采样算法的构建通常是一项艰巨的任务。本提案的主要目的是研究减少此类困难的实用策略,从而使完美采样成为比目前更实用的工具。研究人员描述的关于完美抽样的研究活动集中在统计推断、生产和制造系统以及金融计量经济学中广泛使用的模型。因此,研究人员提出的研究计划可以在统计学,工业工程和金融领域的各种应用中产生重大影响。拟议的研究活动也将大大推进一般知识和完美的抽样在实践中的适用性的理解,从而解决MCMC方法中的一个关键问题。 拟议的活动将在统计计算实践和理论方面产生广泛的影响,通过研究和相关的教学和咨询,由于学生研究助理的直接参与,并通过研讨会和出版物。研究人员还将尽一切努力招聘最好的研究助理,他们同时也将加强一般研究环境的多样性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiao-Li Meng其他文献
Pacemaker implantation for treating migraine-like headache secondary to cardiac arrhythmia: A case report
植入起搏器治疗心律失常继发偏头痛样头痛:一例报告
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:1.6
- 作者:
Yu-Hong Man;Xiao-Li Meng;Ting-Min Yu;Gang Yao - 通讯作者:
Gang Yao
The Analysis of Non-Significant Feature Data Mining in Big Data Environments
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Xiao-Li Meng - 通讯作者:
Xiao-Li Meng
Xiao-Li Meng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiao-Li Meng', 18)}}的其他基金
DMS-EPSRC Collaborative Research: Advancing Statistical Foundations and Frontiers for and from Emerging Astronomical Data Challenges
DMS-EPSRC 合作研究:为新出现的天文数据挑战推进统计基础和前沿
- 批准号:
2113615 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Highly Principled Data Science for Multi-Domain Astronomical Measurements and Analysis
合作研究:用于多领域天文测量和分析的高度原理性数据科学
- 批准号:
1811308 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
Probabilistic Underpinning of Imprecise Probability and Statistical Learning with Low-Resolution Information
不精确概率的概率基础和低分辨率信息的统计学习
- 批准号:
1812063 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Principled Science-Driven Methods for Massive, Intricate, and Multifaceted Data in Astronomy and Astrophysics
协作研究:天文学和天体物理学中海量、复杂和多方面数据的原则性科学驱动方法
- 批准号:
1513492 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: Advanced Statistical Methods and Computation for Emerging Challenges in Astrophysics and Astronomy
合作研究:应对天体物理学和天文学中新挑战的先进统计方法和计算
- 批准号:
1208791 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Continuing Grant
Building a theoretical and methodological framework for collaborative statistical inference and learning: multi-party and multiphase paradigms
构建协作统计推理和学习的理论和方法框架:多方和多阶段范式
- 批准号:
1208799 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: New MCMC-enabled Bayesian Methods for Complex Data and Computer Models Applied in Astronomy
协作研究:用于天文学中应用的复杂数据和计算机模型的新的 MCMC 支持贝叶斯方法
- 批准号:
0907185 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant
CMG Collaborative Research: Statistical Evaluation of Model-Based Uncertainties Leading to Improved Climate Change Projections at Regional to Local Scales
CMG 合作研究:基于模型的不确定性的统计评估可改善区域到地方尺度的气候变化预测
- 批准号:
0724522 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Standard Grant
FRG: Collaborative Research: Overcomplete Representations with Incomplete Data: Theory, Algorithms, and Signal Processing Applications
FRG:协作研究:不完整数据的过完整表示:理论、算法和信号处理应用
- 批准号:
0652743 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: Highly Structured Models and Statistical Computation in High-Energy Astrophysics
合作研究:高能天体物理中的高度结构化模型和统计计算
- 批准号:
0405953 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
麦克斯韦方程的完美匹配层方法
- 批准号:JCZRQN202500733
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
大幅面完美共形接触式光刻技术机理、工艺及应用研究
- 批准号:2025JJ60286
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向非完美先验知识的认知雷达波形设计研究
- 批准号:2025JJ50387
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
紧设计与完美码的分类
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
基于弱吸声耦合的复合超构表面完美吸声机理研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
非完美硬件条件下RIS辅助毫米波定位机制与方法研究
- 批准号:62301243
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
不完美信息动态博弈下复杂网络攻击的时限特征与防御策略构建
- 批准号:52367003
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
非完美数据条件下的多视图多标记学习关键技术研究
- 批准号:62306020
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
多重非完美预测下的在线调度问题研究
- 批准号:62302166
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非完美串行干扰消除下的NOMA物理层安全传输理论研究
- 批准号:62301004
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Application of perfect sampling with SAT/SMT solvers
SAT/SMT 求解器完美采样的应用
- 批准号:
23K10998 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Development of Perfect Sampling with SAT/SMT Solvers
SAT/SMT 求解器完美采样的开发
- 批准号:
20K11694 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Perfect Sampling for Queueing Systems
排队系统的完美采样
- 批准号:
420348-2012 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Perfect Sampling for Queueing Systems
排队系统的完美采样
- 批准号:
420348-2012 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Perfect Sampling for Queueing Systems
排队系统的完美采样
- 批准号:
420348-2012 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
CAREER: Perfect sampling techniques for high dimensional integration
职业:高维集成的完美采样技术
- 批准号:
0968878 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Continuing Grant
Perfect sampling and orientation data analysis
完美采样和定向数据分析
- 批准号:
137470-2003 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Perfect sampling and orientation data analysis
完美采样和定向数据分析
- 批准号:
137470-2003 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
CAREER: Perfect sampling techniques for high dimensional integration
职业:高维集成的完美采样技术
- 批准号:
0548153 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Continuing Grant
Perfect sampling and orientation data analysis
完美采样和定向数据分析
- 批准号:
137470-2003 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual