Collaborative Research: Principled Science-Driven Methods for Massive, Intricate, and Multifaceted Data in Astronomy and Astrophysics
协作研究:天文学和天体物理学中海量、复杂和多方面数据的原则性科学驱动方法
基本信息
- 批准号:1513492
- 负责人:
- 金额:$ 8.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Massive new data resources are coming online in every area of human exploration, changing the way researchers approach data analysis. All-purpose algorithms are expected to identify patterns in data with little tailoring to the problem at hand. While this all-purpose approach is understandable given the massive computational challenges of "big data," it often sacrifices our ability to understand underlying scientific processes. On the other hand, explicitly embedding scientific models into massive statistical analyses may pose significant computational challenges. This project navigates the tension between such all-purpose or "data-driven" methods and specially-designed or "science-driven" methods using a suite of data analytic projects in astro- and solar physics. This work is motivated by recent advances in space-based instrumentation that are increasing both the quality and the quantity of data available to astronomers. Several projects focus on developing new methods for detecting and characterizing astronomical sources, combining information in observations made across the electromagnetic spectrum, including high resolution spectrography, imaging, and time series. Other projects investigate methods for extracting useful features from ultra-high-resolution images of the Sun with the ultimate aim of predicting explosive dynamic processes in the solar atmosphere. The CHASC International Center for Astrostatistics has a track record of designing methods that leverage efficient data-driven techniques but still incorporate scientific understanding of the astronomical sources and maintain the ability to answer specific scientific questions about the underlying astronomical and physical processes. The CHASC Center not only aims to develop new methods for astronomy but also plans to use these problems as springboards in the development of new general statistical methods, especially in signal processing, image analysis, multilevel modeling, and computational statistics.The CHASC International Center for Astrostatistics plans to tackle these challenges using principled statistical methods that incorporate both data-driven and science-driven approaches. For example, the investigators will use coarse data-driven models in an initial analysis that aims to identify simple structures that can be used in a more scientifically meaningful secondary analysis. To formally test for unexpected features in astrophysical images, the team will use flexible data-driven models for deviations from science-driven models for known features. As these examples illustrate, modern astrostatistical analyses involve subtle tradeoffs between complexity and practicality and pose significant computational challenges. A primary aim of this project is to produce tailored Monte Carlo methods that are efficient in such complex settings. The team's statisticians (Meng, van Dyk, Lee, and Stein) have substantial research experience in developing the methods that the Center will extend, employ, and publicize to tackle these challenges: inferential and efficient computational methods under highly-structured models that involve multi-scale structure and/or multiple levels of latent variables and incomplete data. Such models are ideally suited to account for the many physical and instrumental filters of the data generation mechanisms in astrophysics. The astronomers (Kashyap and Siemiginowska) have expertise in the instrumentation and science of high-energy and optical astronomy, and have collaborated with statisticians in developing methods to address scientific questions. It is expected that a fundamental impact of this research will be more general acceptance and use of appropriate methods among astronomers. Second, the development of methods for efficient modeling of scientific phenomena, the comparison of complex models, and science-driven classification and clustering will help solve complex data analytic challenges throughout the natural, social, medical, and engineering sciences.
在人类探索的各个领域,大量新的数据资源正在上线,改变了研究人员进行数据分析的方式。通用算法被期望识别数据中的模式,而很少针对手头的问题进行定制。虽然这种通用的方法是可以理解的,因为“大数据”的巨大计算挑战,它往往牺牲了我们理解底层科学过程的能力。另一方面,将科学模型明确嵌入到大规模统计分析中可能会带来重大的计算挑战。该项目使用一套天文和太阳物理学的数据分析项目来驾驭这种通用或“数据驱动”方法与专门设计或“科学驱动”方法之间的紧张关系。这项工作的动机是天基仪器的最新进展,这些进展提高了天文学家可获得的数据的质量和数量。有几个项目侧重于开发探测和表征天文源的新方法,将电磁波谱观测中的信息结合起来,包括高分辨率光谱学、成像和时间序列。其他项目研究从太阳超高分辨率图像中提取有用特征的方法,最终目的是预测太阳大气层中的爆炸动态过程。CHASC国际天体统计中心在设计方法方面有着良好的记录,这些方法利用了有效的数据驱动技术,但仍然结合了对天文学来源的科学理解,并保持了回答有关基本天文学和物理过程的具体科学问题的能力。CHASC中心不仅致力于开发新的天文学方法,还计划将这些问题作为开发新的通用统计方法的跳板,特别是在信号处理、图像分析、多级建模和计算统计方面。CHASC国际天体统计中心计划使用结合数据驱动和科学驱动方法的原则性统计方法来应对这些挑战。 例如,研究人员将在初步分析中使用粗略的数据驱动模型,旨在确定可用于更科学意义的二次分析的简单结构。为了正式测试天体物理图像中的意外特征,该团队将使用灵活的数据驱动模型来确定已知特征与科学驱动模型的偏差。正如这些例子所示,现代天体统计分析涉及复杂性和实用性之间的微妙权衡,并提出了重大的计算挑战。该项目的主要目的是生产量身定制的Monte Carlo方法,在这种复杂的环境中是有效的。该团队的统计学家(Meng,货车Dyk,Lee和Stein)在开发该中心将扩展,使用和宣传的方法以应对这些挑战方面具有丰富的研究经验:在涉及多尺度结构和/或多层次潜变量和不完整数据的高度结构化模型下的推理和高效计算方法。这种模型非常适合于解释天体物理学中数据生成机制的许多物理和仪器过滤器。天文学家(Kashyap和Siemiginowska)在高能和光学天文学的仪器和科学方面具有专门知识,并与统计学家合作开发解决科学问题的方法。预计这项研究的根本影响将是天文学家更普遍地接受和使用适当的方法。其次,科学现象的有效建模方法的开发,复杂模型的比较,以及科学驱动的分类和聚类将有助于解决整个自然,社会,医学和工程科学的复杂数据分析挑战。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiao-Li Meng其他文献
Pacemaker implantation for treating migraine-like headache secondary to cardiac arrhythmia: A case report
植入起搏器治疗心律失常继发偏头痛样头痛:一例报告
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:1.6
- 作者:
Yu-Hong Man;Xiao-Li Meng;Ting-Min Yu;Gang Yao - 通讯作者:
Gang Yao
The Analysis of Non-Significant Feature Data Mining in Big Data Environments
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Xiao-Li Meng - 通讯作者:
Xiao-Li Meng
Xiao-Li Meng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiao-Li Meng', 18)}}的其他基金
DMS-EPSRC Collaborative Research: Advancing Statistical Foundations and Frontiers for and from Emerging Astronomical Data Challenges
DMS-EPSRC 合作研究:为新出现的天文数据挑战推进统计基础和前沿
- 批准号:
2113615 - 财政年份:2021
- 资助金额:
$ 8.75万 - 项目类别:
Standard Grant
Probabilistic Underpinning of Imprecise Probability and Statistical Learning with Low-Resolution Information
不精确概率的概率基础和低分辨率信息的统计学习
- 批准号:
1812063 - 财政年份:2018
- 资助金额:
$ 8.75万 - 项目类别:
Standard Grant
Collaborative Research: Highly Principled Data Science for Multi-Domain Astronomical Measurements and Analysis
合作研究:用于多领域天文测量和分析的高度原理性数据科学
- 批准号:
1811308 - 财政年份:2018
- 资助金额:
$ 8.75万 - 项目类别:
Standard Grant
Collaborative Research: Advanced Statistical Methods and Computation for Emerging Challenges in Astrophysics and Astronomy
合作研究:应对天体物理学和天文学中新挑战的先进统计方法和计算
- 批准号:
1208791 - 财政年份:2012
- 资助金额:
$ 8.75万 - 项目类别:
Continuing Grant
Building a theoretical and methodological framework for collaborative statistical inference and learning: multi-party and multiphase paradigms
构建协作统计推理和学习的理论和方法框架:多方和多阶段范式
- 批准号:
1208799 - 财政年份:2012
- 资助金额:
$ 8.75万 - 项目类别:
Continuing Grant
Collaborative Research: New MCMC-enabled Bayesian Methods for Complex Data and Computer Models Applied in Astronomy
协作研究:用于天文学中应用的复杂数据和计算机模型的新的 MCMC 支持贝叶斯方法
- 批准号:
0907185 - 财政年份:2009
- 资助金额:
$ 8.75万 - 项目类别:
Standard Grant
CMG Collaborative Research: Statistical Evaluation of Model-Based Uncertainties Leading to Improved Climate Change Projections at Regional to Local Scales
CMG 合作研究:基于模型的不确定性的统计评估可改善区域到地方尺度的气候变化预测
- 批准号:
0724522 - 财政年份:2007
- 资助金额:
$ 8.75万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Overcomplete Representations with Incomplete Data: Theory, Algorithms, and Signal Processing Applications
FRG:协作研究:不完整数据的过完整表示:理论、算法和信号处理应用
- 批准号:
0652743 - 财政年份:2007
- 资助金额:
$ 8.75万 - 项目类别:
Continuing Grant
Practical Perfect Sampling for Bayesian Computation and Engineering and Financial Applications
贝叶斯计算、工程和金融应用的实用完美采样
- 批准号:
0505595 - 财政年份:2005
- 资助金额:
$ 8.75万 - 项目类别:
Continuing Grant
Collaborative Research: Highly Structured Models and Statistical Computation in High-Energy Astrophysics
合作研究:高能天体物理中的高度结构化模型和统计计算
- 批准号:
0405953 - 财政年份:2004
- 资助金额:
$ 8.75万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: FMitF: Track I: A Principled Approach to Modeling and Analysis of Hardware Fault Attacks on Embedded Software
合作研究:FMitF:第一轨:嵌入式软件硬件故障攻击建模和分析的原则方法
- 批准号:
2220345 - 财政年份:2022
- 资助金额:
$ 8.75万 - 项目类别:
Standard Grant
CRCNS Research Proposal: Collaborative Research: US-German Collaboration toward a biophysically principled network model of transcranial magnetic stimulation (TMS)
CRCNS 研究提案:合作研究:美德合作建立经颅磁刺激 (TMS) 的生物物理原理网络模型
- 批准号:
10610594 - 财政年份:2022
- 资助金额:
$ 8.75万 - 项目类别:
CRCNS Research Proposal: Collaborative Research: US-German Collaboration toward a biophysically principled network model of transcranial magnetic stimulation (TMS)
CRCNS 研究提案:合作研究:美德合作建立经颅磁刺激 (TMS) 的生物物理原理网络模型
- 批准号:
10708986 - 财政年份:2022
- 资助金额:
$ 8.75万 - 项目类别:
Collaborative Research: CCRI: New: RFDataFactory: Principled Dataset Generation, Sharing and Maintenance Tools for the Wireless Community
合作研究:CCRI:新:RFDataFactory:无线社区的原则性数据集生成、共享和维护工具
- 批准号:
2120447 - 财政年份:2021
- 资助金额:
$ 8.75万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Principled Uncertainty Quantification in Deep Learning Models for Time Series Analysis
III:媒介:协作研究:用于时间序列分析的深度学习模型中的原则性不确定性量化
- 批准号:
2107200 - 财政年份:2021
- 资助金额:
$ 8.75万 - 项目类别:
Continuing Grant
Collaborative Research: CCRI: New: RFDataFactory: Principled Dataset Generation, Sharing and Maintenance Tools for the Wireless Community
合作研究:CCRI:新:RFDataFactory:无线社区的原则性数据集生成、共享和维护工具
- 批准号:
2120363 - 财政年份:2021
- 资助金额:
$ 8.75万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Principled Uncertainty Quantification in Deep Learning Models for Time Series Analysis
III:媒介:协作研究:用于时间序列分析的深度学习模型中的原则性不确定性量化
- 批准号:
2106961 - 财政年份:2021
- 资助金额:
$ 8.75万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Small: A Principled Framework for Workload Distribution Techniques in Large-Scale Networks
合作研究:CNS 核心:小型:大规模网络中工作负载分配技术的原则框架
- 批准号:
2008639 - 财政年份:2020
- 资助金额:
$ 8.75万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Principled Framework for Workload Distribution Techniques in Large-Scale Networks
合作研究:CNS 核心:小型:大规模网络中工作负载分配技术的原则框架
- 批准号:
2008624 - 财政年份:2020
- 资助金额:
$ 8.75万 - 项目类别:
Standard Grant
ATD: Collaborative Research: Statistically Principled Real-Time Detection of Anomalies for Temporal Network Data
ATD:协作研究:统计原理的时态网络数据异常实时检测
- 批准号:
1830274 - 财政年份:2018
- 资助金额:
$ 8.75万 - 项目类别:
Continuing Grant