Collaborative Proposal: Theoretical and Experimental Analysis of Wormlike Micellar and Polymer Fluids
合作提案:蠕虫状胶束和聚合物流体的理论和实验分析
基本信息
- 批准号:0405931
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-07-01 至 2008-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Under this project we will develop predictive models of complex fluids, particularly wormlike micellar solutions and polymer fluids. As opposed to Newtonian fluids (such as water), these complex fluids exhibit shear-rate-dependent viscosities and elastic effects. Flows of these fluids exhibit purely elastic instabilities, pronounced thermal sensitivity, inhomogeneities in flow conditions (shear banding, shear induced structures, demixing), and early fracture. Mathematical models based on microstructural considerations will be developed consistent with two-fluid effects and with micellar breaking and reforming. The solutions of the resultant initial-boundary value problems for coupled systems of nonlinear partial differential equations with a non-local condition will be analyzed, numerically simulated, examined for stability characteristics, and compared with detailed experimental results in both shear and transient uniaxial extensional flows. The experiments will guide the modeling, and the modeling will in turn guide experimental measurements. The results of this research will form a basis for control of these fluids in use and in processing.Polymer fluids and wormlike micellar solutions are ubiquitous today, being used in paints, plastics, foods, detergents, pharmaceuticals, agrochemical sprays, and oil recovery. A basic understanding of the properties of these mixtures under flow conditions is crucial to their effective use. Through a multidisciplinary collaboration, this project develops predictive tools for use in controlling flow of these complex fluids. This work has potential application as a predictive tool for an important sector of the economy.
在这个项目下,我们将开发复杂流体的预测模型,特别是蠕虫状胶束溶液和聚合物流体。与牛顿流体(如水)相反,这些复杂流体表现出剪切速率相关的粘度和弹性效应。这些流体的流动表现出纯粹的弹性不稳定性、明显的热敏性、流动条件的不均匀性(剪切带、剪切诱导结构、脱混)和早期断裂。基于微观结构考虑的数学模型将与双流体效应和胶束断裂和重整相一致。本文将对具有非局部条件的非线性偏微分方程耦合系统的初边值问题的解进行分析、数值模拟、稳定性特征检验,并与剪切和瞬态单轴拉伸流的详细实验结果进行比较。实验将指导建模,而建模将反过来指导实验测量。这项研究的结果将为在使用和加工过程中控制这些流体奠定基础。聚合物流体和蠕虫状胶束溶液如今无处不在,被用于油漆、塑料、食品、洗涤剂、药品、农用化学品喷雾剂和石油回收。对这些混合物在流动条件下的性质有一个基本的了解对于它们的有效使用是至关重要的。通过多学科合作,该项目开发了用于控制这些复杂流体流动的预测工具。这项工作具有潜在的应用前景,可作为一个重要经济部门的预测工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
L. Pamela Cook-Ioannidis其他文献
L. Pamela Cook-Ioannidis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('L. Pamela Cook-Ioannidis', 18)}}的其他基金
Collaborative Research: Time-Dependent and Inhomogeneous Flows of Entangled Polymeric and Micellar Networks
合作研究:缠结聚合物和胶束网络的时间依赖性和不均匀流动
- 批准号:
0807395 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Some Mathematical Problems in Transonic Aerodynamics & in Flows with Vorticity
数学科学:跨音速空气动力学中的一些数学问题
- 批准号:
9210467 - 财政年份:1993
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Analytical and Numerical Studies of Viscoelastic Flows
数学科学:粘弹性流的分析和数值研究
- 批准号:
8714152 - 财政年份:1988
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Problems in Transonic and Viscoelastic Flow (Mathematics)
跨音速和粘弹性流中的数学问题(数学)
- 批准号:
8620258 - 财政年份:1987
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Mathematical Problems in Transonic Flow
数学科学:跨音速流中的数学问题
- 批准号:
8401738 - 财政年份:1984
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Problems of Hydroelastic Systems
水弹性系统的数学问题
- 批准号:
7703531 - 财政年份:1977
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
Symmetry-enriched topological phases: theoretical foundation and proposal for realization
富含对称性的拓扑相:理论基础和实现建议
- 批准号:
18K03446 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Theoretical study on the oscillation and synchronization mechanisms in biological rhythms and the proposal of experimental studies
生物节律振荡与同步机制的理论研究及实验研究的建议
- 批准号:
18K11464 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Overview of Japan's economic diplomacy, its historical verification, and proposal of a theoretical model
日本经济外交概况、历史验证及理论模型提出
- 批准号:
18H00829 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Proposal: Theoretical, computational, and experimental investigations on the interaction between a lipid bilayer membrane and a solid substrate or particle
合作提案:脂质双层膜与固体基质或颗粒之间相互作用的理论、计算和实验研究
- 批准号:
1614863 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Standard Grant
US-French Research Proposal: Experimental and Theoretical Investigation of the Multi-Scale Emergence of Parametric Working Memory in Prefrontal Cortex Recurrent Networks
美法研究提案:前额皮质循环网络中参数工作记忆多尺度出现的实验和理论研究
- 批准号:
1608236 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Proposal: Theoretical, computational, and experimental investigations on the interaction between a lipid bilayer membrane and a solid substrate or particle
合作提案:脂质双层膜与固体基质或颗粒之间相互作用的理论、计算和实验研究
- 批准号:
1614892 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Proposal: Theoretical, computational, and experimental investigations on the interaction between a lipid bilayer membrane and a solid substrate or particle
合作提案:脂质双层膜与固体基质或颗粒之间相互作用的理论、计算和实验研究
- 批准号:
1614907 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Standard Grant
Kant's Theoretical Philosophy in the Contexts of Modern Philosophy: A Proposal for Dialogic History of Philosophy
现代哲学语境中的康德理论哲学:哲学对话史的提议
- 批准号:
22520016 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Theoretical study of multi-terminal quantum dot: proposal of tunable spin Hall effect
多端量子点理论研究:可调自旋霍尔效应的提出
- 批准号:
22540333 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
A proposal of newly erythrocyte deformability based on multiple mechanical properties with an experimental and a theoretical
通过实验和理论提出基于多种力学特性的新红细胞变形能力
- 批准号:
21700468 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)