Time-Resolved Spin Dynamics in Ferromagnetic Microstructures

铁磁微结构中的时间分辨自旋动力学

基本信息

  • 批准号:
    0406029
  • 负责人:
  • 金额:
    $ 31.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-06-01 至 2008-05-31
  • 项目状态:
    已结题

项目摘要

This research program will study the spin dynamics of sub-micron ferromagnetic particles. Picosecond time-resolved Kerr microscopy will be used to study the excitation spectra and origins of spin dephasing in individual nanoparticles with simple magnetic microstructures. A comprehensive understanding of the dynamics of these systems will be developed, including connections to the important problem of spin transport. New measurements will provide information about low-lying excitations in the presence of a magnetic field, the dynamics of interacting magnetic vortices, and the response of domain walls to sub-nanosecond current pulses. The second area of research focuses on the origins of spin dephasing in smaller nanoparticles, in which the suppression of coherence by the generation of non-uniform spin-wave modes will be explored. The third problem addressed by this program will be the relationship between spin dynamics and spin transport in both metallic and semiconductor devices. The impact on magneto-electronics will be enhanced through collaborations with materials scientists as well as the training of graduate students in ultrafast techniques and nanofabrication. Small magnetic particles, with dimensions much less than one micron (a human hair has a diameter of about 25 microns), are already integrated into technologies such as computer disk drives. New electronic devices have been proposed that combine small magnetic elements with semiconductor components such as transistors. This program addresses the fundamental physics that governs the behavior of small magnetic particles, sometimes called nanoparticles, on time scales of less than a nanosecond (one billionth of a second). For comparison, a "bit" of information in a state-of-the-art computer disk can be written in about one nanosecond. The effects of shape, internal structure, and the presence of other particles will be explored using a very fast form of optical microscopy. The experiments will involve the development of new optical and microwave techniques by graduate students as well as significant collaboration with materials scientists. The development of new ultrafast magnetic devices will be investigated through interactions with other university programs as well as local industry.
该研究计划将研究亚微米铁磁颗粒的自旋动力学。 皮秒时间分辨克尔显微镜将用于研究具有简单磁性微结构的单个纳米粒子的激发光谱和自旋相移的起源。 将全面了解这些系统的动力学,包括与自旋输运这一重要问题的联系。 新的测量将提供有关磁场存在下的低层激励、相互作用的磁涡流的动力学以及磁畴壁对亚纳秒电流脉冲的响应的信息。 第二个研究领域集中于较小纳米颗粒中自旋相移的起源,其中将探索通过产生非均匀自旋波模式来抑制相干性。 该计划解决的第三个问题是金属和半导体器件中自旋动力学和自旋输运之间的关系。 通过与材料科学家的合作以及对超快技术和纳米制造研究生的培训,将增强对磁电子学的影响。尺寸远小于 1 微米(人发直径约为 25 微米)的小型磁性颗粒已被集成到计算机磁盘驱动器等技术中。 人们已经提出了将小型磁性元件与晶体管等半导体元件相结合的新型电子设备。 该程序解决了控制小磁性粒子(有时称为纳米粒子)在小于纳秒(十亿分之一秒)的时间尺度上行为的基础物理问题。 相比之下,最先进的计算机磁盘中的“位”信息可以在大约一纳秒内写入。 将使用非常快速的光学显微镜来探索形状、内部结构和其他颗粒的存在的影响。 这些实验将涉及研究生开发新的光学和微波技术以及与材料科学家的重要合作。 将通过与其他大学项目以及当地工业的互动来研究新型超快磁性设备的开发。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Crowell其他文献

Paul Crowell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Crowell', 18)}}的其他基金

Spin Pumping in Ferromagnet-Semiconductor Heterostructures
铁磁体半导体异质结构中的自旋泵浦
  • 批准号:
    1708287
  • 财政年份:
    2017
  • 资助金额:
    $ 31.5万
  • 项目类别:
    Continuing Grant
Spin Transport Far From Equilibrium
自旋输运远离平衡
  • 批准号:
    1104951
  • 财政年份:
    2011
  • 资助金额:
    $ 31.5万
  • 项目类别:
    Standard Grant
Spin Transport and Dynamics in Ferromagnet-Semiconductor Structures
铁磁体半导体结构中的自旋输运和动力学
  • 批准号:
    0804244
  • 财政年份:
    2008
  • 资助金额:
    $ 31.5万
  • 项目类别:
    Continuing Grant
Acquisition of a Measurement System for Research and Education in Magnetic Heterostructures
获取用于磁性异质结构研究和教育的测量系统
  • 批准号:
    0113917
  • 财政年份:
    2001
  • 资助金额:
    $ 31.5万
  • 项目类别:
    Standard Grant
CAREER: Quantum Critical Dynamics in Magnetic Systems
职业:磁系统中的量子临界动力学
  • 批准号:
    9983777
  • 财政年份:
    2000
  • 资助金额:
    $ 31.5万
  • 项目类别:
    Continuing Grant

相似海外基金

Development of time- and spin-resolved resonant electron scattering and direct observation of photo-excited electron, lattice, and spin correlation
时间和自旋分辨共振电子散射的发展以及光激发电子、晶格和自旋相关性的直接观察
  • 批准号:
    23H00090
  • 财政年份:
    2023
  • 资助金额:
    $ 31.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Time-resolved electron spin resonance spectroscopy of integer-spin reaction intermediates using terahertz waves
使用太赫兹波的整数自旋反应中间体的时间分辨电子自旋共振光谱
  • 批准号:
    21H01040
  • 财政年份:
    2021
  • 资助金额:
    $ 31.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Time-resolved spin contrast variation for precise nanostructure determination
用于精确纳米结构测定的时间分辨自旋对比度变化
  • 批准号:
    21H03741
  • 财政年份:
    2021
  • 资助金额:
    $ 31.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Observation of spin dynamics by time-resolved coherent soft x-ray diffraction imaging
通过时间分辨相干软 X 射线衍射成像观察自旋动力学
  • 批准号:
    19K23590
  • 财政年份:
    2019
  • 资助金额:
    $ 31.5万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Cross-sectional research for opt-spintronics explored by time-, spin- and angle-resolved photoemission
通过时间、自旋和角度分辨光电子探索光自旋电子学的横断面研究
  • 批准号:
    19H02683
  • 财政年份:
    2019
  • 资助金额:
    $ 31.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of soft x-ray ultrafast magnetic imaging for revealing time- and space- resolved spin dynamics
开发用于揭示时间和空间分辨自旋动力学的软 X 射线超快磁成像
  • 批准号:
    19H01816
  • 财政年份:
    2019
  • 资助金额:
    $ 31.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Simultaneous observation of magnetic domain dynamics and spin-motive force generation using time-resolved magneto-optical microscopy
使用时间分辨磁光显微镜同时观察磁域动力学和自旋动势的产生
  • 批准号:
    19K03757
  • 财政年份:
    2019
  • 资助金额:
    $ 31.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of time-resolved x-ray absorption spectroscopy for light and thermal induced spin-crossover complexes
光热诱导自旋交叉配合物的时间分辨 X 射线吸收光谱的开发
  • 批准号:
    19K15580
  • 财政年份:
    2019
  • 资助金额:
    $ 31.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Artery-selective time-resolved and quantitative measurements of intracranial arteries by hybrid 4D flow Arterial Spin Labeling Magnetic Resonance Angiography
通过混合 4D 流动脉自旋标记磁共振血管造影对颅内动脉进行动脉选择性时间分辨和定量测量
  • 批准号:
    418126342
  • 财政年份:
    2019
  • 资助金额:
    $ 31.5万
  • 项目类别:
    Research Grants
Time-and-space-resolved investigation of the spin Peltier effect
自旋珀耳帖效应的时空分辨研究
  • 批准号:
    18K14116
  • 财政年份:
    2018
  • 资助金额:
    $ 31.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了