Gauge Theory and Low Dimensional Topology

规范理论和低维拓扑

基本信息

  • 批准号:
    0406155
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-07-15 至 2008-06-30
  • 项目状态:
    已结题

项目摘要

The main theme of this project is the study of knots, three dimensionalmanifolds and smooth 4-manifolds by using Heegaard Floer homology, gauge theory and symplectic geometry. Potential applications wouldinclude the construction of new invariants for knots and links, better understanding of those knots that admit lens space surgeries andand the construction of new exotic smooth structures on 4-manifolds. The PI also proposes to study the structure of the Floerhomology invariants and their relationship with smooth 4-manifoldinvariants. The proposal studies the relationship between Seiberg-Witten and HeegaardFloer homologies and their applications.While the latter theory uses topological tools and symplectic geometry, the former uses the Seiberg-Witten equations thatare related to gauge theory and mathematical physics. Progress in this direction should lead to a better understanding of connections betweenlow dimensional topology and gauge theory.
本项目的主要内容是利用Heegaard Floer同调、规范理论和辛几何来研究纽结、三维流形和光滑四维流形。潜在的应用包括构造纽结和链环的新的不变量,更好地理解那些允许透镜空间手术的纽结,以及在4-流形上构造新的奇异光滑结构。PI还建议研究Floerhomology不变量的结构及其与光滑4-流形不变量的关系。该方案研究了Seiberg-Witten同调与HeegaardFloer同调之间的关系及其应用,HeegaardFloer同调理论使用的是拓扑工具和辛几何,而Seiberg-Witten同调理论使用的是与规范理论和数学物理相关的Seiberg-Witten方程。在这个方向上的进展应导致更好地理解低维拓扑和规范理论之间的连接。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zoltan Szabo其他文献

Evaluation of the psychometric properties of the Hungarian quality of life in depression scale
  • DOI:
    10.1016/j.eurpsy.2007.11.003
  • 发表时间:
    2008-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Reka Viola;Kornelia Lovas;Zoltan Szabo;Zsuzsanna Czenner;David M. Meads;Gyongyver Soos;Stephen P. McKenna
  • 通讯作者:
    Stephen P. McKenna
Gross-beta activity in ground water: natural sources and artifacts of sampling and laboratory analysis
  • DOI:
    10.1016/0883-2927(95)00020-8
  • 发表时间:
    1995-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Alan H. Welch;Zoltan Szabo;David L. Parkhurst;Peter C. Van Metre;Ann H. Mullin
  • 通讯作者:
    Ann H. Mullin
Fetoscopic and open transumbilical fetal cardiac catheterization in sheep. Potential approaches for human fetal cardiac intervention.
绵羊胎儿镜和开放式经脐胎儿心导管插入术。
  • DOI:
  • 发表时间:
    1997
  • 期刊:
  • 影响因子:
    37.8
  • 作者:
    Thomas Kohl;Zoltan Szabo;Kenji Suda;Edwin Petrossian;E. Ko;Deniz Kececioglu;P. Moore;Norman H. Silverman;M. Harrison;Tony M. Chou;F. Hanley
  • 通讯作者:
    F. Hanley
SUTURING AND KNOTTING TECHNIQUES FOR THORACOSCOPIC CARDIAC SURGERY
  • DOI:
    10.1016/s0039-6109(05)70245-0
  • 发表时间:
    2000-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Zoltan Szabo;G. James Avery;Andras Sandor;Demetrius E.M. Litwin
  • 通讯作者:
    Demetrius E.M. Litwin
The interplay of transition metals in ferroptosis and pyroptosis
  • DOI:
    10.1186/s13008-024-00127-9
  • 发表时间:
    2024-08-03
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Frantisek Vana;Zoltan Szabo;Michal Masarik;Monika Kratochvilova
  • 通讯作者:
    Monika Kratochvilova

Zoltan Szabo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zoltan Szabo', 18)}}的其他基金

Three-Dimensional Manifolds, Heegaard Floer Homology and Knot Theory
三维流形、Heegaard Floer 同调和纽结理论
  • 批准号:
    1904628
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Low Dimensional Topology and holomorphic disks
低维拓扑和全纯盘
  • 批准号:
    1606571
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Heegaard Floer homology, knots, and three-manifolds
Heegaard Floer 同调、结和三流形
  • 批准号:
    1309152
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Low Dimensional Topology and Heegaard Floer homology
低维拓扑和 Heegaard Florer 同调
  • 批准号:
    1006006
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Heegaard Floer homology and Low Dimensional Topology
Heegaard Florer 同调和低维拓扑
  • 批准号:
    0704053
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Spectral Analysis on Riemannian Manifolds
黎曼流形的谱分析
  • 批准号:
    0604861
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Homological Invariants of Knots and Three-Manifolds
结和三流形的同调不变量
  • 批准号:
    0603940
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Isospectral and isotonal metrics with different local geometries
具有不同局部几何形状的等谱和等调度量
  • 批准号:
    0104361
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Gauge theory, 3-manifolds, and smooth 4-manifolds
规范理论、3 流形和光滑 4 流形
  • 批准号:
    0107792
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
The Geometry of Smooth 4-Manifolds
光滑4流形的几何结构
  • 批准号:
    9704359
  • 财政年份:
    1997
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
  • 批准号:
    12247163
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Gauge theory and low dimensional topology
规范理论和低维拓扑
  • 批准号:
    RGPIN-2016-05404
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Gauge theory and low dimensional topology
规范理论和低维拓扑
  • 批准号:
    RGPIN-2016-05404
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Gauge Theory, Floer Homology, and Invariants of Low-Dimensional Manifolds
规范理论、Floer 同调和低维流形不变量
  • 批准号:
    1949209
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Applications of Gauge Theory and Floer Homology to Low-Dimensional Topology
规范理论和Floer同调在低维拓扑中的应用
  • 批准号:
    1811111
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Gauge theory and low dimensional topology
规范理论和低维拓扑
  • 批准号:
    RGPIN-2016-05404
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Gauge theory and low dimensional topology
规范理论和低维拓扑
  • 批准号:
    RGPIN-2016-05404
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Gauge Theory, Floer Homology, and Invariants of Low-Dimensional Manifolds
规范理论、Floer 同调和低维流形不变量
  • 批准号:
    1707857
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Gauge theory and low dimensional topology
规范理论和低维拓扑
  • 批准号:
    RGPIN-2016-05404
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Gauge theory and low-dimensional topology
规范理论和低维拓扑
  • 批准号:
    238844-2011
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Gauge theory and Floer homology in low-dimensional topology
低维拓扑中的规范理论和Floer同调
  • 批准号:
    1506328
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了