The Geometry of Smooth 4-Manifolds

光滑4流形的几何结构

基本信息

  • 批准号:
    9704359
  • 负责人:
  • 金额:
    $ 7.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-08-01 至 2000-07-31
  • 项目状态:
    已结题

项目摘要

9704359 Szabo The main theme of this project is the study of simply-connected smooth closed 4-manifolds and their Seiberg-Witten invariants. The project has three parts. The first part is related to the classification problem for these 4-manifolds. While the recent failure of the Minimal Conjecture shows that smooth 4-manifolds tend to defy classification schemes, there are other related conjectures like the 3/2 Conjecture and the Simple-type Conjecture, and the investigator will try to disprove these conjectures as well. In the second part, the investigator will continue his joint work with John Morgan to study how Seiberg-Witten invariants change along an h-cobordism. This problem is related to the Simple-type Conjecture and also to the third part of the project, in which the investigator will study the relation between the combinatorial presentations (Kirby calculus pictures) and Seiberg-Witten invariants of simply-connected smooth closed 4-manifolds. A long-term goal in this direction is to find generalizations of the Seiberg-Witten invariants. The study of smooth structures of simply-connected 4-dimensional manifolds was initiated in 1984 by Simon Donaldson. In his ground breaking work, Donaldson applied the Yang-Mills equation and the corresponding Yang-Mills moduli spaces over the 4-manifolds. The corresponding Donaldson invariants were used to settle various problems in 4-dimensional topology. The Yang-Mills equation is a partial differential equation that has special importance in theoretical physics, and its use in the classification of smooth 4-manifolds revealed a surprising link between topology and theoretical physics. This link has been underlined by Seiberg and Witten in 1994, when, using ideas coming from theoretical physics, they discovered a pair of new partial differential equations and the corresponding Seiberg-Witten invariants of smooth 4-manifolds. ***
9704359 Szabo本项目的主要主题是研究单连通光滑闭4-流形及其Seiberg-Witten不变量。该项目包括三个部分。第一部分是关于这类4-流形的分类问题。虽然最近极小猜想的失败表明光滑的4-流形往往不符合分类模式,但还有其他相关的猜想,如3/2猜想和简单类型猜想,研究者也将试图反驳这些猜想。在第二部分中,调查者将继续他与约翰·摩根的合作,研究Seiberg-Witten不变量是如何沿着h-Coobordism变化的。这个问题与简单类型猜想有关,也与项目的第三部分有关,在第三部分中,研究者将研究单连通光滑闭4-流形的组合表示(Kirby微积分图)与Seiberg-Witten不变量之间的关系。这个方向的一个长期目标是找到Seiberg-Witten不变量的推广。单连通四维流形的光滑结构的研究是由Simon Donaldson于1984年开创的。在他的开创性工作中,Donaldson在4-流形上应用了Yang-Mills方程和相应的Yang-Mills模空间。利用相应的Donaldson不变量解决了四维拓扑中的各种问题。杨-米尔斯方程是一个在理论物理中具有特殊重要性的偏微分方程,它在光滑四维流形的分类中揭示了拓扑学和理论物理之间惊人的联系。Seiberg和Witten在1994年强调了这种联系,当时他们利用理论物理的思想,发现了一对新的偏微分方程和相应的光滑4-流形的Seiberg-Witten不变量。***

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zoltan Szabo其他文献

Evaluation of the psychometric properties of the Hungarian quality of life in depression scale
  • DOI:
    10.1016/j.eurpsy.2007.11.003
  • 发表时间:
    2008-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Reka Viola;Kornelia Lovas;Zoltan Szabo;Zsuzsanna Czenner;David M. Meads;Gyongyver Soos;Stephen P. McKenna
  • 通讯作者:
    Stephen P. McKenna
Gross-beta activity in ground water: natural sources and artifacts of sampling and laboratory analysis
  • DOI:
    10.1016/0883-2927(95)00020-8
  • 发表时间:
    1995-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Alan H. Welch;Zoltan Szabo;David L. Parkhurst;Peter C. Van Metre;Ann H. Mullin
  • 通讯作者:
    Ann H. Mullin
Fetoscopic and open transumbilical fetal cardiac catheterization in sheep. Potential approaches for human fetal cardiac intervention.
绵羊胎儿镜和开放式经脐胎儿心导管插入术。
  • DOI:
  • 发表时间:
    1997
  • 期刊:
  • 影响因子:
    37.8
  • 作者:
    Thomas Kohl;Zoltan Szabo;Kenji Suda;Edwin Petrossian;E. Ko;Deniz Kececioglu;P. Moore;Norman H. Silverman;M. Harrison;Tony M. Chou;F. Hanley
  • 通讯作者:
    F. Hanley
SUTURING AND KNOTTING TECHNIQUES FOR THORACOSCOPIC CARDIAC SURGERY
  • DOI:
    10.1016/s0039-6109(05)70245-0
  • 发表时间:
    2000-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Zoltan Szabo;G. James Avery;Andras Sandor;Demetrius E.M. Litwin
  • 通讯作者:
    Demetrius E.M. Litwin
The interplay of transition metals in ferroptosis and pyroptosis
  • DOI:
    10.1186/s13008-024-00127-9
  • 发表时间:
    2024-08-03
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Frantisek Vana;Zoltan Szabo;Michal Masarik;Monika Kratochvilova
  • 通讯作者:
    Monika Kratochvilova

Zoltan Szabo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zoltan Szabo', 18)}}的其他基金

Three-Dimensional Manifolds, Heegaard Floer Homology and Knot Theory
三维流形、Heegaard Floer 同调和纽结理论
  • 批准号:
    1904628
  • 财政年份:
    2019
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Continuing Grant
Low Dimensional Topology and holomorphic disks
低维拓扑和全纯盘
  • 批准号:
    1606571
  • 财政年份:
    2016
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Standard Grant
Heegaard Floer homology, knots, and three-manifolds
Heegaard Floer 同调、结和三流形
  • 批准号:
    1309152
  • 财政年份:
    2013
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Continuing Grant
Low Dimensional Topology and Heegaard Floer homology
低维拓扑和 Heegaard Florer 同调
  • 批准号:
    1006006
  • 财政年份:
    2010
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Continuing Grant
Heegaard Floer homology and Low Dimensional Topology
Heegaard Florer 同调和低维拓扑
  • 批准号:
    0704053
  • 财政年份:
    2007
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Continuing Grant
Spectral Analysis on Riemannian Manifolds
黎曼流形的谱分析
  • 批准号:
    0604861
  • 财政年份:
    2006
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Continuing Grant
Homological Invariants of Knots and Three-Manifolds
结和三流形的同调不变量
  • 批准号:
    0603940
  • 财政年份:
    2006
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Continuing Grant
Gauge Theory and Low Dimensional Topology
规范理论和低维拓扑
  • 批准号:
    0406155
  • 财政年份:
    2004
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Continuing Grant
Isospectral and isotonal metrics with different local geometries
具有不同局部几何形状的等谱和等调度量
  • 批准号:
    0104361
  • 财政年份:
    2001
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Standard Grant
Gauge theory, 3-manifolds, and smooth 4-manifolds
规范理论、3 流形和光滑 4 流形
  • 批准号:
    0107792
  • 财政年份:
    2001
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Standard Grant

相似海外基金

Ergodic Properties of Smooth Systems on Manifolds
流形上光滑系统的遍历性质
  • 批准号:
    2247572
  • 财政年份:
    2023
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Standard Grant
Smooth 4-manifolds, hyperbolic 3-manifolds and diffeomorphism groups
光滑 4 流形、双曲 3 流形和微分同胚群
  • 批准号:
    2304841
  • 财政年份:
    2023
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Continuing Grant
Collaborative Research: Construction and Properties of Sobolev Spaces of Differential Forms on Smooth and Lipschitz Manifolds with Applications to FEEC
合作研究:光滑流形和 Lipschitz 流形上微分形式 Sobolev 空间的构造和性质及其在 FEEC 中的应用
  • 批准号:
    2309779
  • 财政年份:
    2023
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Standard Grant
Collaborative Research: Construction and Properties of Sobolev Spaces of Differential Forms on Smooth and Lipschitz Manifolds with Applications to FEEC
合作研究:光滑流形和 Lipschitz 流形上微分形式 Sobolev 空间的构造和性质及其在 FEEC 中的应用
  • 批准号:
    2309780
  • 财政年份:
    2023
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Standard Grant
Understanding Smooth Structures via Regular Homotopy of Surfaces in 4-Manifolds
通过 4 流形中曲面的正同伦了解光滑结构
  • 批准号:
    2204367
  • 财政年份:
    2022
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Standard Grant
Algebraic K-Theory in Fixed-Point Theory and Smooth Manifolds
定点理论和光滑流形中的代数 K 理论
  • 批准号:
    2005524
  • 财政年份:
    2020
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Standard Grant
Smooth 4-Manifolds: 2-3, 5- and 6-Dimensional Perspectives
平滑 4 流形:2-3、5 和 6 维视角
  • 批准号:
    2005554
  • 财政年份:
    2020
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Continuing Grant
Smooth 4-Manifold Topology, 3-Manifold Group Actions, the Heegaard Tree, and Low Volume Hyperbolic 3-Manifolds
平滑 4 流形拓扑、3 流形组动作、Heegaard 树和低容量双曲 3 流形
  • 批准号:
    2003892
  • 财政年份:
    2020
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Continuing Grant
Ergodic Properties of Smooth Systems on Manifolds
流形上光滑系统的遍历性质
  • 批准号:
    1956310
  • 财政年份:
    2020
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Continuing Grant
Differential geometric structures on smooth manifolds and Gromov-Hausdorff convergences
光滑流形上的微分几何结构和 Gromov-Hausdorff 收敛性
  • 批准号:
    19K03474
  • 财政年份:
    2019
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了