Adaptive Sampling Designs in Network and Spatial Settings

网络和空间设置中的自适应采样设计

基本信息

项目摘要

The purpose of this research project is to develop new adaptivesampling designs and inference methods for sampling in network andspatially structured populations. Adaptive sampling designs are thosein which the procedure for selecting the sample can depend on valuesof variables of interest observed during the survey. In spatialsettings, that can mean adaptively adding new units to the sample inthe vicinity of high or otherwise interesting observed values. Innetwork or graph settings, links can be adaptively followed frominteresting sample nodes to add new nodes to the sample. A variety ofnew sampling procedures, together with design and model basedestimation methods, will be investigated in the study. A new,flexible and versatile class of adaptive designs, termed ``active setadaptive sampling,'' was found during the preliminary work toward thisproject. Designs in this class have certain advantages over adaptivecluster sampling and some of the traditional network sampling designsin being more flexible, allowing for control of total sample size andnot requiring complete inclusion of connected components.Design-unbiased estimates are possible with some of these designs,providing inferences that are robust against assumptions about thepopulation. These designs lend themselves toward model-basedinferences as well and can be used in some situations to help ensurethat the assumptions for the model-based inferences are met. Thisproject will advance the theory and methodology of adaptive samplingand in particular will fully investigate and develop severalcategories of new adaptive sampling designs within this class anddevelop and evaluate design and model based inference methods for usewith adaptive designs of all types.With adaptive sampling designs, the study design can change inresponse to the values and patterns observed during the study. Forexample, in a study of an at-risk hidden human population, sociallinks from particularly high-risk individuals can be followed to addmore individuals to the sample; in a survey of an unevenly distributednatural resource, new observations may be adaptively made inneighborhoods of high observed abundance. In previous work it hasbeen established that in many situations the theoretically optimalsampling strategy is an adaptive one. Specific adaptive designs, suchas the adaptive cluster sampling designs developed in a previousproject, have been shown to give substantial gains in precision orefficiency over conventional strategies for certain types ofpopulations, in particular rare, clustered ones. The results of theproposed research will provide research tools for other scientificfields, including the biological, environmental, health, and socialsciences. Each of these fields has to deal with populations that aredifficult to sample by conventional means because of theirunpredictably uneven spatial and network structures. The samplingmethods resulting from this project have applications to manysituations of importance to society, including studies of hiddenpopulations such as those at risk for HIV/AIDS, environmentalassessment and monitoring, biological surveys, natural resourcesexplorations and inventories, Internet surveys, rapid response tonatural and induced health threats, studies in human social behavior,and archaeological studies.
本研究的目的是发展新的适应性抽样设计和推理方法,用于网络和空间结构总体的抽样。 自适应抽样设计是指在抽样过程中,样本的选择取决于调查过程中观察到的变量值。 在空间设置中,这可能意味着在高或其他有趣的观察值附近自适应地向样本添加新的单位。 在网络或图形设置中,链接可以自适应地从感兴趣的样本节点向样本添加新节点。 该研究将研究各种新的抽样程序,以及基于设计和模型的估计方法。 一个新的,灵活的和通用的自适应设计类,称为“主动集自适应采样,”在对这个项目的初步工作中发现。 与自适应聚类抽样和一些传统的网络抽样设计相比,这类设计具有某些优势,因为它们更灵活,允许控制总样本大小,不需要完全包含连通分量。其中一些设计可以实现设计无偏估计,提供的推论对总体假设具有鲁棒性。 这些设计也适用于基于模型的推理,并且可以在某些情况下用于帮助确保基于模型的推理的假设得到满足。 本专题将推进适应性抽样的理论和方法,特别是将在本课程中全面研究和开发几类新的适应性抽样设计,并开发和评估用于所有类型适应性设计的设计和基于模型的推理方法。 例如,在一个处于危险中的隐藏人群的研究中,特别是高风险个体的社会联系可以被跟踪,以增加更多的个体到样本中;在一个不均匀分布的自然资源的调查中,新的观察可以在高观测丰度的社区中进行适应性的观察。 在以前的工作中,已经建立了在许多情况下,理论上最优采样策略是一个自适应的. 特定的适应性设计,如在以前的项目中开发的适应性整群抽样设计,已被证明在某些类型的群体,特别是稀有的,聚类的群体中,比传统的策略在精度或效率上有实质性的提高。 该研究成果将为生物、环境、健康和社会科学等其他科学领域提供研究工具。 这些领域中的每一个都必须处理难以通过传统手段进行采样的人群,因为他们不可预测的不均匀空间和网络结构。 该项目产生的抽样方法可应用于许多对社会有重要意义的情况,包括对隐藏人口的研究,如艾滋病毒/艾滋病的风险,环境评估和监测,生物调查,自然资源勘探和库存,互联网调查,对自然和诱发的健康威胁的快速反应,人类社会行为研究和考古研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Rosenberger其他文献

James Rosenberger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Rosenberger', 18)}}的其他基金

National Institute of Statistical Sciences Writing Workshop for Junior Researchers
国家统计科学研究所初级研究员写作研讨会
  • 批准号:
    2022942
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
2019 NISS Writing Workshop for Junior Researchers
2019 NISS 初级研究员写作研讨会
  • 批准号:
    1933743
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NISS Writing Workshop for New Researchers
NISS 新研究人员写作研讨会
  • 批准号:
    1833522
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Social Science and Statistics: A Conference in Honor of Clifford C. Clogg
社会科学与统计学:纪念 Clifford C. Clogg 的会议
  • 批准号:
    9629891
  • 财政年份:
    1996
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences Computing Research Environments
数学科学计算研究环境
  • 批准号:
    9508187
  • 财政年份:
    1995
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Research Experiences for Undergraduates in Statistics at Penn State
数学科学:宾夕法尼亚州立大学统计学本科生的研究经验
  • 批准号:
    9424043
  • 财政年份:
    1995
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Scientific Computing Research Environments for the Mathematical Sciences
数学科学:数学科学的科学计算研究环境
  • 批准号:
    9305775
  • 财政年份:
    1993
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: IMS 225th Special Topics Meeting: Variations on the Likelihood Principle; October 25-28, 1992,University Park, PA
数学科学:IMS 第 225 届专题会议:似然原理的变体;
  • 批准号:
    9202815
  • 财政年份:
    1992
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Scientific Computing Research Environments for the Mathematical Sciences
数学科学:数学科学的科学计算研究环境
  • 批准号:
    9105859
  • 财政年份:
    1991
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Sampling Designs and Statistical Methods for the Analysis of Complex Life History and Genetic Data
用于分析复杂生活史和遗传数据的抽样设计和统计方法
  • 批准号:
    RGPIN-2020-05528
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Sampling Designs and Statistical Methods for the Analysis of Complex Life History and Genetic Data
用于分析复杂生活史和遗传数据的抽样设计和统计方法
  • 批准号:
    RGPIN-2020-05528
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Sampling Designs and Statistical Methods for the Analysis of Complex Life History and Genetic Data
用于分析复杂生活史和遗传数据的抽样设计和统计方法
  • 批准号:
    RGPIN-2020-05528
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Sampling and Intervention Designs
抽样和干预设计
  • 批准号:
    RGPIN-2019-05631
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Sampling designs and statistical methods for incomplete data analysis
不完全数据分析的抽样设计和统计方法
  • 批准号:
    RGPIN-2014-04904
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Sampling and Intervention Designs
抽样和干预设计
  • 批准号:
    RGPIN-2019-05631
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Sampling designs and statistical methods for incomplete data analysis
不完全数据分析的抽样设计和统计方法
  • 批准号:
    RGPIN-2014-04904
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Sampling designs and statistical methods for incomplete data analysis
不完全数据分析的抽样设计和统计方法
  • 批准号:
    RGPIN-2014-04904
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Sampling designs and statistical methods for incomplete data analysis
不完全数据分析的抽样设计和统计方法
  • 批准号:
    RGPIN-2014-04904
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Sampling designs and statistical methods for incomplete data analysis
不完全数据分析的抽样设计和统计方法
  • 批准号:
    RGPIN-2014-04904
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了