Analytical/Computational Methods for Rare Events in Lightwave Systems

光波系统中罕见事件的分析/计算方法

基本信息

  • 批准号:
    0406513
  • 负责人:
  • 金额:
    $ 19.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-06-01 至 2008-05-31
  • 项目状态:
    已结题

项目摘要

AbstractDMS-046513William Kath, Northwestern UniversityTitle: Analytical/Computational Methods for Rare Events in Lightwave SystemsThe goal of this project is to construct new methods based upon variance reduction techniques, such as importance sampling, that can be used to efficiently simulate rare events caused by noise in lightwave systems. Importance sampling is a method of biasing (or, altering) the probability distributions used to generate random Monte-Carlo trials so that simulated errors occur more frequently than would be the case otherwise. The aim here is to exploit the mathematical structure of the equations governing the propagation of signals to allow importance sampling to be performed. For example, in optical fibers, the governing equation is the nonlinear Schroedinger (NLS) equation, which is a completely integrable Hamiltonian system. The inverse scattering solution of the NLS equation shows that each pulse has a set of modes associated with it; these modes correspond to changes in the pulse's amplitude, phase, position and frequency. Since anyvalue of the pulse parameters yields a valid solution of the NLS equation, no resistance is encountered if any of them is changed by noise. These four modes thus provide a natural basis upon which to construct methods by which the noise is intentionally biased to produce large signal fluctuations.The development of high-bit-rate data transmission over optical fibers is one of the major technological achievements of the late 20th century. Optical fibers have fueled the growth of the global internet and are revolutionizing the ways in which information is communicated and processed. Because of the enhanced levels of performance demanded of modern lightwave systems, traditional analytical or computational methods are by themselves insufficient to accurately model the rare events that determine the overallperformance of these highly complex systems. At the same time, their often large development costs makes the accurate prediction of their behavior and performance essential. Recent work has demonstrated, however, that hybrid analytical/computational approaches can make accomplishing this task not only possible, but also practical. Proof-of-concept examples have shown that error probabilities in such systems as small as one part in a trillion should no longer be considered beyond the reach of estimation. The methods that will be developed as part of this project are expected to provide the basis for computational tools that can yield large reductions in the time required to determine the performance of such systems.
摘要DMS-046513 William Kath,西北大学题目:光波系统中罕见事件的分析/计算方法本项目的目标是构建基于方差减少技术的新方法,如重要性抽样,可用于有效地模拟光波系统中由噪声引起的罕见事件。重要性抽样是一种偏置(或改变)用于生成随机蒙特-卡罗试验的概率分布的方法,以便模拟错误比其他情况更频繁地发生。 这里的目的是利用控制信号传播的方程的数学结构,以允许执行重要性采样。 例如,在光纤中,控制方程是非线性薛定谔(NLS)方程,其是完全可积的哈密顿系统。 NLS方程的逆散射解表明,每个脉冲都有一组与之相关的模式;这些模式对应于脉冲的振幅、相位、位置和频率的变化。 由于脉冲参数的任何值产生NLS方程的有效解,因此如果它们中的任何一个被噪声改变,则不会遇到电阻。 因此,这四种模式提供了一个自然的基础,在此基础上,构造方法,通过该方法,有意地偏置噪声以产生大的信号波动。通过光纤的高比特率数据传输的发展是世纪后期的主要技术成就之一。光纤推动了全球互联网的发展,并正在彻底改变信息通信和处理的方式。由于现代光波系统对性能要求的提高,传统的分析或计算方法本身不足以精确地模拟决定这些高度复杂系统整体性能的罕见事件。 与此同时,它们通常需要很大的开发成本,因此准确预测它们的行为和性能至关重要。 然而,最近的工作表明,混合分析/计算方法可以使完成这项任务不仅可能,而且实用。 概念验证的例子表明,在这种系统中,误差概率小到万亿分之一,不应再被认为超出估计范围。 作为该项目的一部分,将开发的方法预计将为计算工具提供基础,这些工具可以大大减少确定此类系统性能所需的时间。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Kath其他文献

Fully-automated multi-objective optimization for fitting a neuronal model with real morphology
  • DOI:
    10.1186/1471-2202-16-s1-p117
  • 发表时间:
    2015-12-18
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Aushra Abouzeid;Nelson Spruston;William Kath
  • 通讯作者:
    William Kath

William Kath的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Kath', 18)}}的其他基金

RTG: Interdisciplinary Training in Quantitative Biological Modeling
RTG:定量生物建模的跨学科培训
  • 批准号:
    1547394
  • 财政年份:
    2016
  • 资助金额:
    $ 19.4万
  • 项目类别:
    Continuing Grant
Multiple-scale mathematical models of ultra-short-pulse modelocked lasers
超短脉冲锁模激光器的多尺度数学模型
  • 批准号:
    1211912
  • 财政年份:
    2012
  • 资助金额:
    $ 19.4万
  • 项目类别:
    Standard Grant
Hybrid analytical/computational methods for the identification of errors in lightwave systems
用于识别光波系统错误的混合分析/计算方法
  • 批准号:
    0709070
  • 财政年份:
    2007
  • 资助金额:
    $ 19.4万
  • 项目类别:
    Standard Grant
Collaborative Research: Mathematical and Computational Methods for High Data-Rate Optical Fiber Communications
合作研究:高数据率光纤通信的数学和计算方法
  • 批准号:
    0101476
  • 财政年份:
    2001
  • 资助金额:
    $ 19.4万
  • 项目类别:
    Standard Grant
Interdisciplinary Grant in the Mathematical Sciences: Models of Hippocampal Neuron Activity
数学科学跨学科资助:海马神经元活动模型
  • 批准号:
    0075109
  • 财政年份:
    2000
  • 资助金额:
    $ 19.4万
  • 项目类别:
    Standard Grant
Periodically and Random Driven Dynamics in Nonlinear Optical Fibers
非线性光纤中的周期性和随机驱动动力学
  • 批准号:
    9804602
  • 财政年份:
    1998
  • 资助金额:
    $ 19.4万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Stability and Dynamics of Pulses in Nonlinear Optical Fibers
数学科学:非线性光纤中脉冲的稳定性和动力学
  • 批准号:
    9500615
  • 财政年份:
    1995
  • 资助金额:
    $ 19.4万
  • 项目类别:
    Standard Grant
Mathematical Sciences Computing Research Environments
数学科学计算研究环境
  • 批准号:
    9304397
  • 财政年份:
    1993
  • 资助金额:
    $ 19.4万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Modeling and Dynamics of Pulses in Nonlinear Optical Fibers
数学科学:非线性光纤中脉冲的建模和动力学
  • 批准号:
    9208415
  • 财政年份:
    1992
  • 资助金额:
    $ 19.4万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Dynamics of Pulses in Nonlinear Optical Waveguides
数学科学:非线性光波导中的脉冲动力学
  • 批准号:
    9002951
  • 财政年份:
    1990
  • 资助金额:
    $ 19.4万
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

REU Site: Computational Methods with applications in Materials Science
REU 网站:计算方法及其在材料科学中的应用
  • 批准号:
    2348712
  • 财政年份:
    2024
  • 资助金额:
    $ 19.4万
  • 项目类别:
    Standard Grant
Computational methods for pandemic-scale genomic epidemiology
大流行规模基因组流行病学的计算方法
  • 批准号:
    MR/Z503526/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.4万
  • 项目类别:
    Research Grant
CAREER: Computational Design of Fluorescent Proteins with Multiscale Excited State QM/MM Methods
职业:利用多尺度激发态 QM/MM 方法进行荧光蛋白的计算设计
  • 批准号:
    2338804
  • 财政年份:
    2024
  • 资助金额:
    $ 19.4万
  • 项目类别:
    Continuing Grant
REU Site: Research on Computational Methods in High Performance Computing and Their Applications to Computational Sciences
REU 网站:高性能计算中的计算方法及其在计算科学中的应用研究
  • 批准号:
    2348884
  • 财政年份:
    2024
  • 资助金额:
    $ 19.4万
  • 项目类别:
    Standard Grant
PROTACS: new computational methods and targets
PROTACS:新的计算方法和目标
  • 批准号:
    2897704
  • 财政年份:
    2023
  • 资助金额:
    $ 19.4万
  • 项目类别:
    Studentship
Developing computational methods to minimise social bias in healthcare AI
开发计算方法以尽量减少医疗保健人工智能中的社会偏见
  • 批准号:
    2868742
  • 财政年份:
    2023
  • 资助金额:
    $ 19.4万
  • 项目类别:
    Studentship
Developing computational methods to identify of endogenous substrates of E3 ubiquitin ligases and molecular glue degraders
开发计算方法来鉴定 E3 泛素连接酶和分子胶降解剂的内源底物
  • 批准号:
    10678199
  • 财政年份:
    2023
  • 资助金额:
    $ 19.4万
  • 项目类别:
Novel Computational Methods for Microbiome Data Analysis in Longitudinal Study
纵向研究中微生物组数据分析的新计算方法
  • 批准号:
    10660234
  • 财政年份:
    2023
  • 资助金额:
    $ 19.4万
  • 项目类别:
RUI: Characterizing Valence, Temporary, and Non-valence Anions: Computational Methods and Photo-detachment Spectroscopy
RUI:表征化合价、临时和非化合价阴离子:计算方法和光分离光谱
  • 批准号:
    2303652
  • 财政年份:
    2023
  • 资助金额:
    $ 19.4万
  • 项目类别:
    Continuing Grant
III: Small: Computational Methods for Multi-dimensional Data Integration to Improve Phenotype Prediction
III:小:多维数据集成的计算方法以改进表型预测
  • 批准号:
    2246796
  • 财政年份:
    2023
  • 资助金额:
    $ 19.4万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了