Turning Points and Applications
转折点和应用
基本信息
- 批准号:0406998
- 负责人:
- 金额:$ 12.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-07-01 至 2008-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal: DMS-0406998PI: Weishi LiuInstitution: University of KansasTitle: Turning Points and Applications ABSTRACTThis project is concerned with singularly perturbed systems of differential equations with turning points and their applications. The goal is to establish a comprehensive geometric singular perturbation theory for such systems. Singularly perturbed problems typically involve multiple-scale features that result in non-uniform behavior. The presence of turning points causes a loss of stability and creates complications in the dynamical structure. The investigator will use a dynamical-systems approach to systematically investigate turning-point behavior. The dynamical behavior depends heavily on the topological structure of the set of turning points and its relation to the vector field. The investigator will classify the main structures and apply analytical and geometric tools of modern dynamical systems theory to their study.Multiple time and space scales make real-world systems rich and exciting, and understanding real-life problems is the driving force for the development of mathematical theory. This project focuses on the study of problems arising from many areas of science and engineering--such as fluid dynamics, population dynamics, neural networks, and biochemical processes--and involving multiple time and space scales. The theoretical study will identify critical parameters responsible for the complicated structure of such systems and examine mathematical forms of interactions in the processes. As an important component of this proposal, two specific fields of applications will be examined: (1) relaxation oscillations in biological systems such as predator-prey models and epidemic disease models, and (2) engineered biochemical process of wastewater treatment. These systems involve vastly different scales, both in space and in time, and demonstrate complicated behaviors. This project, if successful, will significantly improve our understanding of physical phenomena with multiple scales and provide insight for better engineering designs for control purposes. The proposed activity will also greatly enhance education and training programs in this important area for students and non-experts because of the intuitive formulation of the approach as well as the results.
项目申请:DMS-0406998PI:刘伟时;机构:堪萨斯大学题目:拐点与应用摘要本课题研究具有拐点的奇异摄动微分方程系统及其应用。目的是为这类系统建立一个综合的几何奇异摄动理论。奇摄动问题通常涉及导致非均匀行为的多尺度特征。拐点的存在导致稳定性的丧失,并造成动力结构的复杂性。研究者将使用动态系统方法系统地调查转折点行为。其动力学行为在很大程度上取决于拐点集的拓扑结构及其与向量场的关系。研究者将对主要结构进行分类,并应用现代动力系统理论的分析和几何工具进行研究。多重时间和空间尺度使现实世界的系统丰富而令人兴奋,理解现实生活中的问题是数学理论发展的动力。该项目侧重于研究许多科学和工程领域产生的问题,如流体动力学、种群动力学、神经网络和生化过程,涉及多个时间和空间尺度。理论研究将确定对这种系统的复杂结构负责的关键参数,并检查过程中相互作用的数学形式。作为本提案的重要组成部分,将研究两个特定领域的应用:(1)生物系统中的松弛振荡,如捕食者-猎物模型和流行病模型;(2)废水处理的工程生化过程。这些系统在空间和时间上都涉及到非常不同的尺度,并表现出复杂的行为。该项目如果成功,将大大提高我们对多尺度物理现象的理解,并为更好的控制工程设计提供见解。由于方法和结果的直观表述,拟议的活动也将大大加强对学生和非专家在这一重要领域的教育和培训计划。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Weishi Liu其他文献
On the Continuation of an Invariant Torus in a Family with Rapid Oscillations
关于快速振荡族中不变环面的连续
- DOI:
10.1137/s0036141098338740 - 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
C. Chicone;Weishi Liu - 通讯作者:
Weishi Liu
Effects of (small) permanent charge and channel geometry on ionic flows via classical Poisson-Nernst-Planck modelsnbsp;
通过经典泊松-能斯特-普朗克模型研究(小)永久电荷和通道几何形状对离子流的影响
- DOI:
- 发表时间:
- 期刊:
- 影响因子:1.9
- 作者:
Shuguan Ji;Weishi Liu;Mingji Zhang - 通讯作者:
Mingji Zhang
Linear stability of the sub-to-super inviscid transonic stationary wave for gas flow in a nozzle of varying area
不同面积喷嘴内气流亚超无粘跨声速驻波的线性稳定性
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
John M. Hong;Cheng;Ying;Weishi Liu - 通讯作者:
Weishi Liu
Multiple viscous wave fan profiles for Riemann solutions of hyperbolic systems of conservation laws
- DOI:
10.3934/dcds.2004.10.871 - 发表时间:
2004-03 - 期刊:
- 影响因子:1.1
- 作者:
Weishi Liu - 通讯作者:
Weishi Liu
Origins of Chinese reindeer (Rangifer tarandus) based on mitochondrial DNA analyses
基于线粒体DNA分析的中国驯鹿(Rangifer tarandus)的起源
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:3.7
- 作者:
Sheng;Jian;Weishi Liu;Yanling Xia;Lei Han;He - 通讯作者:
He
Weishi Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Weishi Liu', 18)}}的其他基金
The XI Americas Conference on Differential Equations and Nonlinear Analysis
第十一届美洲微分方程和非线性分析会议
- 批准号:
1658005 - 财政年份:2017
- 资助金额:
$ 12.98万 - 项目类别:
Standard Grant
Dynamics of Singularly Perturbed Systems and Ion Channel Problems
奇扰动系统动力学和离子通道问题
- 批准号:
0807327 - 财政年份:2008
- 资助金额:
$ 12.98万 - 项目类别:
Standard Grant
Geometric Singular Perturbations with Turning Points and Synchronization of Coupled Oscillators
具有转折点的几何奇异扰动和耦合振荡器的同步
- 批准号:
0071931 - 财政年份:2000
- 资助金额:
$ 12.98万 - 项目类别:
Standard Grant
相似国自然基金
光子人工微结构中Exceptional Points附近的模式耦合及相关新特性研究
- 批准号:11674247
- 批准年份:2016
- 资助金额:70.0 万元
- 项目类别:面上项目
相似海外基金
A Study on Estimation of Functions with Discontinuous Points by Edge-Preserving Spline Smoothing and Its Applications
保边样条平滑估计含不连续点函数及其应用研究
- 批准号:
19K20361 - 财政年份:2019
- 资助金额:
$ 12.98万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Théories des points fixes et des points critiques en analyse non linéaire et applications
问题修复理论和问题批评以及分析非线性和应用
- 批准号:
170452-2013 - 财政年份:2019
- 资助金额:
$ 12.98万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Critical Points and Excursion Probability of Random Fields: Theory and Statistical Applications
协作研究:随机场的临界点和偏移概率:理论和统计应用
- 批准号:
1902432 - 财政年份:2018
- 资助金额:
$ 12.98万 - 项目类别:
Standard Grant
Collaborative Research: Critical Points and Excursion Probability of Random Fields: Theory and Statistical Applications
协作研究:随机场的临界点和偏移概率:理论和统计应用
- 批准号:
1811659 - 财政年份:2018
- 资助金额:
$ 12.98万 - 项目类别:
Standard Grant
Collaborative Research: Critical Points and Excursion Probability of Random Fields: Theory and Statistical Applications
协作研究:随机场的临界点和偏移概率:理论和统计应用
- 批准号:
1811632 - 财政年份:2018
- 资助金额:
$ 12.98万 - 项目类别:
Standard Grant
Support points of a distribution, with applications to Bayesian computation
分布的支持点及其在贝叶斯计算中的应用
- 批准号:
487562-2016 - 财政年份:2017
- 资助金额:
$ 12.98万 - 项目类别:
Postgraduate Scholarships - Doctoral
Théories des points fixes et des points critiques en analyse non linéaire et applications
问题修复理论和问题批评以及分析非线性和应用
- 批准号:
170452-2013 - 财政年份:2016
- 资助金额:
$ 12.98万 - 项目类别:
Discovery Grants Program - Individual
Research on Galois representations and applications to rational points
伽罗瓦表示及其在有理点上的应用研究
- 批准号:
16K17578 - 财政年份:2016
- 资助金额:
$ 12.98万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Theory and applications of shape optimization of singular points in continuum
连续体奇异点形状优化理论与应用
- 批准号:
16K05285 - 财政年份:2016
- 资助金额:
$ 12.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Support points of a distribution, with applications to Bayesian computation
分布的支持点及其在贝叶斯计算中的应用
- 批准号:
487562-2016 - 财政年份:2016
- 资助金额:
$ 12.98万 - 项目类别:
Postgraduate Scholarships - Doctoral














{{item.name}}会员




