RUI: Ground-Truth Driven Stereo Algorithm Design
RUI:地面实况驱动的立体算法设计
基本信息
- 批准号:0413169
- 负责人:
- 金额:$ 23.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-08-01 至 2008-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project aims to advance the understanding of energy-based stereo-matching techniques. Using new stereo data sets with ground-truth disparities, the research will address the question: "What is the right energy function to minimize?" The specific goals include developing an automated system for obtaining highly accurate multi-view stereo data sets with ground truth, and designing new energy functions whose minimization yields disparities that (1) accurately model occlusion, (2) align occlusion boundaries with object boundaries using monocular cues, and (3) create reasonable disparity hypotheses in half-occluded regions. Stereo algorithms that perform well on these challenging tasks have important applications in emerging consumer-level applications, including virtual gaze correction for teleconferencing, and the creation of image-based object models for 3D visualization. The research will also focus on developing fast, approximate energy minimization techniques, including variants of graph-cut and dynamic programming methods. Undergraduate students will be actively involved in all components of this research, in particular in the data acquisition and testing stages. The intellectual merits of the project are to provide the computer vision community with high-quality, multi-view data sets with ground truth and to improve the state of the art in energy-based image-matching techniques. The broader impacts of the project include the improved applicability of computer vision methods to applications that are becoming central to society, such as telecommunication and e-commerce; and the opportunity to expose undergraduates at a liberal-arts college to the world of research, experimentation, and discovery.
该项目旨在促进对基于能量的立体匹配技术的理解。使用新的立体数据集与地面真实差异,研究将解决这个问题:“什么是正确的能量函数最小化?”具体目标包括开发一个自动化系统,用于获取具有地面真实度的高精度多视图立体数据集,并设计新的能量函数,其最小化产生的差异(1)准确地模拟遮挡,(2)使用单眼线索将遮挡边界与物体边界对齐,以及(3)在半遮挡区域创建合理的视差假设。在这些具有挑战性的任务中表现良好的立体算法在新兴的消费者级应用中有着重要的应用,包括用于远程会议的虚拟凝视校正,以及用于3D可视化的基于图像的对象模型的创建。研究还将侧重于开发快速、近似的能量最小化技术,包括图切和动态规划方法的变体。本科生将积极参与这项研究的所有组成部分,特别是在数据采集和测试阶段。该项目的智力优势在于为计算机视觉社区提供高质量的、具有地面真实性的多视图数据集,并提高基于能量的图像匹配技术的最新水平。该项目的更广泛影响包括提高计算机视觉方法在电信和电子商务等日益成为社会核心的应用中的适用性;也有机会让文理学院的本科生接触到研究、实验和发现的世界。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Scharstein其他文献
Daniel Scharstein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Scharstein', 18)}}的其他基金
RI: Small: RUI: Benchmarks and Algorithms for Mobile Image Matching
RI:小型:RUI:移动图像匹配的基准和算法
- 批准号:
1718376 - 财政年份:2017
- 资助金额:
$ 23.4万 - 项目类别:
Standard Grant
RI: Small: RUI: Image Matching in the Wild
RI:小:RUI:野外图像匹配
- 批准号:
1320715 - 财政年份:2013
- 资助金额:
$ 23.4万 - 项目类别:
Standard Grant
RI:Small:RUI: Towards the Next Generation of Stereo Algorithms
RI:Small:RUI:迈向下一代立体算法
- 批准号:
0917109 - 财政年份:2009
- 资助金额:
$ 23.4万 - 项目类别:
Standard Grant
CAREER: Image-Based Rendering using Stereo Vision
职业:使用立体视觉进行基于图像的渲染
- 批准号:
9984485 - 财政年份:2000
- 资助金额:
$ 23.4万 - 项目类别:
Continuing Grant
相似国自然基金
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
STEPPING OUT - Understanding the ground truth and mechanisms of falls and balance instability in community dwelling older people.
走出去——了解社区老年人跌倒和平衡不稳定的基本事实和机制。
- 批准号:
EP/Y029143/1 - 财政年份:2024
- 资助金额:
$ 23.4万 - 项目类别:
Research Grant
Ground Truth Validation of Crop Growth Cycle Using High Resolution Proximal and Remote Sensing
使用高分辨率近端和遥感对作物生长周期进行地面实况验证
- 批准号:
549723-2019 - 财政年份:2022
- 资助金额:
$ 23.4万 - 项目类别:
Alliance Grants
Ground Truth Validation of Crop Growth Cycle Using High Resolution Proximal and Remote Sensing
使用高分辨率近端和遥感对作物生长周期进行地面实况验证
- 批准号:
549723-2019 - 财政年份:2021
- 资助金额:
$ 23.4万 - 项目类别:
Alliance Grants
Ground-Truth Labeling of Images for AI Development in Computational Pathology
用于计算病理学人工智能开发的图像真实标签
- 批准号:
562132-2021 - 财政年份:2021
- 资助金额:
$ 23.4万 - 项目类别:
University Undergraduate Student Research Awards
Ground Truth Validation of Crop Growth Cycle Using High Resolution Proximal and Remote Sensing
使用高分辨率近端和遥感对作物生长周期进行地面实况验证
- 批准号:
549723-2019 - 财政年份:2020
- 资助金额:
$ 23.4万 - 项目类别:
Alliance Grants
Social Media, Violence, and Social Isolation Among At-Risk Adolescents: Exploring Ground Truth
高危青少年中的社交媒体、暴力和社会孤立:探索真相
- 批准号:
10265597 - 财政年份:2020
- 资助金额:
$ 23.4万 - 项目类别:
Social Media, Violence, and Social Isolation Among At-Risk Adolescents: Exploring Ground Truth
高危青少年中的社交媒体、暴力和社会孤立:探索真相
- 批准号:
10461047 - 财政年份:2020
- 资助金额:
$ 23.4万 - 项目类别:
Evaluation of Interpretable Deep Learning Approaches for Neuroimaging in Dementia using Stroke Classification as a Ground Truth for Brain Pathology
使用中风分类作为脑病理学的基本事实来评估痴呆症神经影像的可解释深度学习方法
- 批准号:
2407028 - 财政年份:2020
- 资助金额:
$ 23.4万 - 项目类别:
Studentship
MRI: Acquisition of Omnipercipient Chamber for Gathering Ground Truth and Enabling Research on Smart and Connected Things
MRI:获取全知室以收集地面真相并支持智能和互联事物的研究
- 批准号:
2018966 - 财政年份:2020
- 资助金额:
$ 23.4万 - 项目类别:
Standard Grant
Social Media, Violence, and Social Isolation Among At-Risk Adolescents: Exploring Ground Truth
高危青少年中的社交媒体、暴力和社会孤立:探索真相
- 批准号:
10701687 - 财政年份:2020
- 资助金额:
$ 23.4万 - 项目类别: