Evaluation of Interpretable Deep Learning Approaches for Neuroimaging in Dementia using Stroke Classification as a Ground Truth for Brain Pathology

使用中风分类作为脑病理学的基本事实来评估痴呆症神经影像的可解释深度学习方法

基本信息

  • 批准号:
    2407028
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

Brief description of the context of the research including potential impactDementia and Alzheimer's disease were the leading causes of death in 2018, with a growing prevalence in the UK that is expected to rise to 1 million by 2025. Deep learning models have shown great promise in aiding early diagnosis and prognosis. However, their complexity and lack of transparency hinders the likelihood of their adoption into clinical practice. This is particularly a problem in clinical routines where stakes are high, and the consequences of misdiagnosis can be life-threatening. In these areas interpretable approaches can provide a way of assessing, and often visualising, the behaviour of the network to better understand why a particular outcome is obtained. However, recent approaches have been limited due to lack of validation and the absence of a ground truth.By taking advantages of the latest technologies from the rapidly developing field of interpretable ML, this project aims to compare alternative interpretability methods in reference to 'ground truth' neurological conditions like stroke before applying them to neurodegenerative disease and dementia.Aims and ObjectivesThis research aims to critically validate the effectiveness of several interpretation methods for dementia diagnosis and prognosis using stroke classification as a ground truth for brain pathology. To begin with, we will aim to build a network that can classify stroke patients from controls with near-perfect accuracy in order to ensure that the attention maps are useful and informative. This will allow us to explore the generalisability of these models to site and/or data quality, voxel dimension and data normalisation. Other technical considerations we will consider include the effect of lesion size or atrophy, and clinical characteristics on model performance and interpretability. Having used the ground-truth case of stroke to assess interpretability approaches, the optimal approaches will then be applied to dementia duringthe PhD phase. The resulting attention maps from these models will be assessed qualitatively and semi-quantitatively for clinical utility by a sample of radiologists (from UCL and collaborating sites) with expertise in dementia.Novelty of Research MethodologyInterpretable medical imaging, a subfield of 'explainable AI', is an important topic for translational research. The planned research on neuroimage interpretability in dementia will be novel and provide both cohort and patient level attention maps, essential for delivering precision medicine for dementia. To our knowledge, comparative assessment of interpretability methods using stroke as a ground truth has not previously been reported. This research includes working closely with radiologists, to provide clinical expertise and data on clinical utility, making it a truly interdisciplinary translational project.Alignment to EPSRC's strategies and research areasOur research focus aligns with EPSRC's strategy for enabling earlier and more effective diagnosis (1) and integration of additional information from clinical data and images using machine learning (3). In addition, collaborating with clinicians aligns with the focus in strong engagement with relevant stakeholders (7). This work falls within the artificial intelligence technologies and image and vision computing research areas.Any companies or collaborators involvedThe project involves collaboration with the UCL Dementia Research Centre (DRC) and the NIHR Biomedical Research Centre at University College London Hospital (UCLH).
研究背景的简要描述,包括潜在的影响痴呆症和阿尔茨海默病是2018年死亡的主要原因,在英国的患病率不断上升,预计到2025年将上升到100万。深度学习模型在帮助早期诊断和预后方面显示出巨大的潜力。然而,它们的复杂性和缺乏透明度阻碍了它们被采用到临床实践中的可能性。这在风险很高的临床常规中尤其是一个问题,并且误诊的后果可能危及生命。在这些领域,可解释的方法可以提供一种评估和可视化网络行为的方法,以更好地理解为什么会获得特定的结果。然而,最近的方法由于缺乏验证和缺乏基础事实而受到限制。通过利用快速发展的可解释ML领域的最新技术,该项目旨在将替代性解释方法应用于神经退行性疾病和痴呆症之前,参考“地面实况”神经系统疾病(如中风),对替代性解释方法进行比较。使用中风分类作为脑病理学基础事实的几种解释方法对痴呆诊断和预后的有效性。开始,我们的目标是建立一个网络,可以分类中风患者从控制接近完美的准确性,以确保注意力地图是有用的和信息。这将使我们能够探索这些模型对研究中心和/或数据质量、体素维度和数据标准化的通用性。我们将考虑的其他技术因素包括病变大小或萎缩的影响,以及临床特征对模型性能和可解释性的影响。在使用中风的真实案例来评估可解释性方法后,最佳方法将在博士阶段应用于痴呆症。由此产生的注意力地图从这些模型将定性和半定量评估的放射科医生(从伦敦大学学院和合作网站)的样本与专业知识在demential.新奇的研究MethodologyInterpretable医学成像,一个子领域的“可解释的人工智能”,是一个重要的课题转化研究的临床效用。计划中的痴呆症神经影像可解释性研究将是新颖的,并提供队列和患者水平的注意力地图,这对于为痴呆症提供精准医学至关重要。据我们所知,以前没有报道过使用中风作为地面实况的可解释性方法的比较评估。该研究包括与放射科医生密切合作,提供临床专业知识和临床实用数据,使其成为真正的跨学科翻译项目。与EPSRC的战略和研究领域保持一致我们的研究重点与EPSRC的战略保持一致,以实现更早和更有效的诊断(1)以及使用机器学习整合临床数据和图像的额外信息(3)。此外,与临床医生合作符合与相关利益相关者密切合作的重点(7)。这项工作福尔斯人工智能技术和图像和视觉计算研究领域。任何公司或合作者参与该项目涉及与伦敦大学学院痴呆症研究中心(DRC)和伦敦大学学院医院(UCLH)的NIHR生物医学研究中心的合作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Toward next-generation flexible and interpretable deep learning: A novel evolutionary wide dendritic learning
迈向下一代灵活且可解释的深度学习:一种新颖的进化广泛的树突学习
  • 批准号:
    23K24899
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Deciphering electrophysiological Alzheimer's Disease biomarkers for early diagnosis using interpretable deep learning
使用可解释的深度学习破译电生理阿尔茨海默病生物标志物以进行早期诊断
  • 批准号:
    24K18602
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Excellence in Research: Harnessing Big Data and Domain Knowledge to Advance Deep Learning for Interpretable Cell Quantitation
卓越的研究:利用大数据和领域知识推进深度学习以实现可解释的细胞定量
  • 批准号:
    2302274
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Interpretable Deep Learning Models for Analysis of Longitudinal 3D Mammography Screenings
用于分析纵向 3D 乳房 X 光检查的可解释深度学习模型
  • 批准号:
    10667745
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Knockoff statistics-driven interpretable deep learning models for uncovering potential biomarkers for COVID-19 risk prediction
山寨统计驱动的可解释深度学习模型,用于发现潜在的 COVID-19 风险预测生物标志物
  • 批准号:
    468265
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Fellowship Programs
Multi-omic single-cell, electronic health record, and biomedical knowledge graph data integration using interpretable deep learning approaches
使用可解释的深度学习方法进行多组学单细胞、电子健康记录和生物医学知识图数据集成
  • 批准号:
    576153-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alliance Grants
SCH: INT: Collaborative Research: DeepSense: Interpretable Deep Learning for Zero-effort Phenotype Sensing and Its Application to Sleep Medicine
SCH:INT:合作研究:DeepSense:零努力表型感知的可解释深度学习及其在睡眠医学中的应用
  • 批准号:
    2313481
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: SCH: Geometry and Topology for Interpretable and Reliable Deep Learning in Medical Imaging
合作研究:SCH:医学成像中可解释且可靠的深度学习的几何和拓扑
  • 批准号:
    2205417
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Interpretable Deep Forecasting of Hazardous Substance Use during High School
高中期间有害物质使用的可解释深度预测
  • 批准号:
    10706556
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Interpretable Deep Learning Methods to Investigate Genetics and Epigenetics of Alzheimer's Disease at a Single-Cell Resolution
可解释的深度学习方法以单细胞分辨率研究阿尔茨海默病的遗传学和表观遗传学
  • 批准号:
    10698166
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了