Multi-Phase Flow Dynamics in Polymer Electrolyte Fuel Cells

聚合物电解质燃料电池中的多相流动力学

基本信息

  • 批准号:
    0414319
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-03-01 至 2007-02-28
  • 项目状态:
    已结题

项目摘要

ABSTRACT - 0414319With the potential for high power density and efficiency, fuel cells hold tremendouspromise for future portable, automotive and stationary applications. Among fuel cell types, thestrongest candidate for portable applications is the direct methanol fuel cell (DMFC), while thehydrogen polymer electrolyte fuel cell (H2 PEFC) is the strongest candidate for stationary andtransportation applications. The minute length scales and complex materials in these fuel cellspresent many unique and challenging physicochemical issues. In particular, two-phase floweffects through the thin-film porous carbon fiber gas diffusion layers (GDLs) present a majormicrofluidic management bottleneck for achieving high power density and stability. The GDL isa critical component and functions to deliver reactant to, and product away from, the electrodeswhere electrochemical reaction occurs. If product transport through the GDL or flow channels isinsufficient, reactant mass transport will be restricted, limiting performance. For example, CO2gas production at the anode of the DMFC can block transport of liquid methanol solution to thereaction site. At the cathode of the DMFC and H2 PEFC, liquid water from electrochemicalreaction, electro-osmotic drag and diffusion can severely limit performance by flooding thecathode, starving it of oxygen. In both the DMFC and H2 PEFC, there is a complex two-phaseflow challenge to manage the transport of reactants and products through the thin-film porousGDL and in the flow channels. As a result, the naturally hydrophilic GDLs are typically tailoredby addition of hydrophobic material during processing. To date, the fraction of hydrophobicadditive is determined through inefficient trial-and-error testing. The existing literature has alsofollowed a phenomenological approach and has yet to yield any clear rationale or fundamentalknowledge of the basic transport processes of bubbles and liquid droplets through the GDL, at theinterfacial boundaries between the GDL and the flow channel, or in the flow channels.We propose to initiate an experimental and analytical study of the two-phase flow of gasphasebubbles and liquid-phase droplets in reactant flow channels and thin-film porous mediawith tailored wetting properties. We will use high-speed microfluidic flow visualizationtechniques and a model fuel cell to experimentally quantify parameters such as bubble/dropletshape, detachment size, transport rate, distribution, and liquid saturation in the porous material asa function of operating conditions. Analytical models will then be developed to describe thebubble/liquid droplet dynamics and validated using the novel data obtained from a highlyinstrumented fuel cell. The ultimate goal of this research is to provide, for the first time, designtheory based on fundamental understanding that can be used to engineer fuel cell materials andempower microfluidic management for next-generation fuel cell systems. This would represent asignificant leap in understanding of one of the most critical areas currently limiting fuel celldevelopment and would impact portable, stationary, and automotive fuel cell design.The objectives of our integrated approach to research and education are to: 1) create aphysical and intellectual infrastructure for addressing a multidisciplinary technical junction in thedesign of next-generation hydrogen or methanol polymer electrolyte fuel cells; 2) train graduateand undergraduate students in physical/chemical science fields highly relevant to current nationalneeds; 3) integrate cutting-edge research results directly into three established courses at PennState and enable supported graduate students to present material in the undergraduate courses; 4)expand the role for fuel cell and microfluidic research programs at PSU in undergraduate andgraduate recruiting process; and 5) provide significant opportunities for undergraduate/graduatestudents to interact with industry through existing and future Electrochemical Engine Centerindustry collaborations.
摘要-0414319由于具有高功率密度和高效率的潜力,燃料电池在未来的便携式、汽车和固定式应用中有着巨大的前景。在燃料电池类型中,便携式应用的最强候选者是直接甲醇燃料电池(DMFC),而氢聚合物电解质燃料电池(H2 PEFC)是固定和运输应用的最强候选者。这些燃料电池中微小的长度尺度和复杂的材料提出了许多独特的和具有挑战性的物理化学问题。特别是,通过薄膜多孔碳纤维气体扩散层(GDL)的两相流效应提出了一个majormicrofluidic管理瓶颈,实现高功率密度和稳定性。GDL伊萨一个关键的组成部分,其功能是将反应物输送到发生电化学反应的电极,并将产物输送离开电极。如果通过GDL或流动通道的产物传输不足,则反应物质量传输将受到限制,从而限制性能。例如,在DMFC的阳极处的CO2气体产生可阻断液体甲醇溶液向反应位点的运输。在DMFC和H2 PEFC的阴极处,来自电化学反应、电渗透拖曳和扩散的液态水可以通过淹没阴极、使其缺氧而严重限制性能。在DMFC和H2 PEFC中,存在复杂的两相流挑战,以管理反应物和产物通过薄膜多孔GDL和在流动通道中的运输。因此,天然亲水性GDL通常通过在加工过程中添加疏水性材料来定制。迄今为止,疏水添加剂的分数是通过低效的试错测试来确定的。现有的文献也遵循现象学的方法,并且还没有产生任何关于气泡和液滴通过GDL的基本传输过程的明确的理论基础或基本知识,在GDL和流动通道之间的界面边界处,或在流动通道中。我们建议启动气相气泡和液体的两相流的实验和分析研究,相液滴在反应物流动通道和薄膜多孔介质与定制的润湿性能。我们将使用高速微流体流动可视化技术和模型燃料电池实验量化参数,如气泡/液滴形状,分离大小,传输速率,分布和液体饱和度在多孔材料阿萨操作条件的函数。然后将开发分析模型来描述气泡/液滴动力学,并使用从高度仪表化的燃料电池获得的新数据进行验证。这项研究的最终目标是首次提供基于基本理解的设计理论,可用于工程燃料电池材料和下一代燃料电池系统的微流体管理。这将是对目前限制燃料电池发展的最关键领域之一的理解的一个重大飞跃,并将影响便携式、固定式和汽车燃料电池的设计。我们的研究和教育综合方法的目标是:1)为解决下一代氢或甲醇聚合物电解质燃料电池设计中的多学科技术交叉建立物理和智力基础设施; 2)培养研究生和本科生在物理/化学科学领域高度相关的当前国家的需求; 3)整合前沿的研究成果直接到三个既定的课程在宾夕法尼亚州立大学,并使支持研究生目前的材料在本科课程; 4)扩大在PSU的燃料电池和微流体研究计划在本科生和研究生招生过程中的作用;和5)提供本科生/研究生通过现有和未来的电化学发动机中心行业合作与行业互动的重要机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kendra Sharp其他文献

Kendra Sharp的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kendra Sharp', 18)}}的其他基金

IPA award - Dr. Kendra Sharp
IPA 奖 - Kendra Sharp 博士
  • 批准号:
    2113982
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Intergovernmental Personnel Award
US-Pakistani Developing Collaboration on the Current Estimation and Future Prediction of Micro-hydro Power Potential: Response to a Changing Environment
美巴就小水电潜力的当前估算和未来预测开展合作:应对不断变化的环境
  • 批准号:
    1137272
  • 财政年份:
    2011
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
CAREER: Particle Effects in Microfluidics
职业:微流体中的粒子效应
  • 批准号:
    1016834
  • 财政年份:
    2010
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
CAREER: Particle Effects in Microfluidics
职业:微流体中的粒子效应
  • 批准号:
    0348149
  • 财政年份:
    2004
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant

相似国自然基金

Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark Supercooled Phase Transition
  • 批准号:
    24ZR1429700
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
ATLAS实验探测器Phase 2升级
  • 批准号:
    11961141014
  • 批准年份:
    2019
  • 资助金额:
    3350 万元
  • 项目类别:
    国际(地区)合作与交流项目
地幔含水相Phase E的温度压力稳定区域与晶体结构研究
  • 批准号:
    41802035
  • 批准年份:
    2018
  • 资助金额:
    12.0 万元
  • 项目类别:
    青年科学基金项目
基于数字增强干涉的Phase-OTDR高灵敏度定量测量技术研究
  • 批准号:
    61675216
  • 批准年份:
    2016
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于Phase-type分布的多状态系统可靠性模型研究
  • 批准号:
    71501183
  • 批准年份:
    2015
  • 资助金额:
    17.4 万元
  • 项目类别:
    青年科学基金项目
纳米(I-Phase+α-Mg)准共晶的临界半固态形成条件及生长机制
  • 批准号:
    51201142
  • 批准年份:
    2012
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
连续Phase-Type分布数据拟合方法及其应用研究
  • 批准号:
    11101428
  • 批准年份:
    2011
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
D-Phase准晶体的电子行为各向异性的研究
  • 批准号:
    19374069
  • 批准年份:
    1993
  • 资助金额:
    6.4 万元
  • 项目类别:
    面上项目

相似海外基金

ERI: Unraveling Multi-Phase Ink Shear-Thinning Flow Mechanism in Direct Ink Writing Process: Computational Fluid Dynamics Simulation and In-Situ Experimental Verification
ERI:揭示直接墨水书写过程中的多相墨水剪切稀化流动机制:计算流体动力学模拟和原位实验验证
  • 批准号:
    2347497
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Design and control of smart local energy systems considering multi-phase optimal power flow
考虑多相最优潮流的智能局域能源系统设计与控制
  • 批准号:
    2741523
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Studentship
Physics-informed machine-learning models of multi-phase magma flow between reservoirs
储层之间多相岩浆流的基于物理的机器学习模型
  • 批准号:
    2745392
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Studentship
Large-scale multi-phase flow simulation for foam flooding method in porous media
多孔介质泡沫驱大规模多相流模拟
  • 批准号:
    22K14178
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Modeling two-phase flow, multi-lithologic melting, and chemical disequilibrium with uranium-series isotopes
职业:用铀系同位素模拟两相流、多岩性熔融和化学不平衡
  • 批准号:
    2046932
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Multi-phase Flow Analysis Using Particle Method
使用粒子法进行多相流分析
  • 批准号:
    21H03453
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
ISS: Dynamic Manipulation of Multi-Phase Flow Using Light-Responsive Surfactants for Phase-Change Applications
ISS:使用光响应表面活性剂进行相变应用的多相流动态操控
  • 批准号:
    2025655
  • 财政年份:
    2020
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Monitoring and control of two-phase slug flow in microdevices with multi-channels
多通道微型装置中两相段塞流的监测与控制
  • 批准号:
    19K05140
  • 财政年份:
    2019
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Pore-scale modelling of multi-phase flow and the impact of wettability
多相流的孔隙尺度建模和润湿性的影响
  • 批准号:
    2294896
  • 财政年份:
    2019
  • 资助金额:
    $ 10万
  • 项目类别:
    Studentship
Enhancing the performance of an electrical tomography based multi-phase flow meter using machine learning algorithms
使用机器学习算法增强基于电断层扫描的多相流量计的性能
  • 批准号:
    105614
  • 财政年份:
    2019
  • 资助金额:
    $ 10万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了