Enhancing the performance of an electrical tomography based multi-phase flow meter using machine learning algorithms
使用机器学习算法增强基于电断层扫描的多相流量计的性能
基本信息
- 批准号:105614
- 负责人:
- 金额:$ 20.13万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Collaborative R&D
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The monitoring of product formulation is of significance in the performance and management of many manufacturingindustries such as fast-moving consumable goods (FMCG) production.For several decades, the direct sampling methods via a quality control (QC) laboratory have been the principle method ofmeasuring product quality. However, these sampling-based methods are often time-consuming and unrepresentative totrue product conditions. Other controls are time-based (e.g. clean for 15mins; mix for 3hrs) when an in-processmeasurement can make significant savings.ITS has developed an industrial tomography meter that utilizes electrical process tomography technology and is able tooffer an accurate in-line concentration / quality measurement. The industrial meter has already been applied intomanufacturing applications with good performance. It is believed that the same technology can be more widely applied toFMCG industries such as in-line product recognition to reduce waste and increase productivity in continuous productionlines. The technology can be further extended to real-time measurement of clean in place (CIP).The principle of ITS's tomography meter is mainly based on multiphase electrical measurements, as the above-mentionedapplications all involve multiple ingredients, which have distinct electrical properties. For monitoring multi-phase processesusing an ITS tomography meter, an external instrument is required to track the conductivity variations of the primary liquid,so the system output can be independent to the background fluctuations, which could be influenced by either ionic concentration or temperature of the aqueous medium. Ideally, a conductivity probe can be installed in a sampling tank,where the probe measurement can potentially reflect the in-situ status of the liquid in the sensor. However practically, it ischallenging to find a suitable location that can reliably indicate the conductivity property of the primary material. In addition,the probe cannot be installed in series with the process pipelines due to the flow disturbances and the risk of productcontamination.To overcome the issue, ITS has developed a machine learning algorithm that can extract the liquid conductivity changebased on the existing raw sensor measurements, this new algorithm allows the system to accurately monitor the in-lineliquid conductivity, aiming to eliminate the system dependency on the conductivity probe. Furthermore, for single-phaseprocesses, the machines learning algorithm can also be used to identify the completeness of product formulation or batchtransition process, which realises a true in-situ fluid quality control relative to the product formulation.This innovation has been tested at a lab scale and shown to be robust across a range of process conditions (TRL4). Thenext stage will be investigating the robustness of the machine learning algorithm when it is applied in scale-up processenvironments (TRL5). The flow rigs facility from Saskatchewan Research Council (SRC) and the University of Birmingham(UoB) provides an ideal platform for characterising the algorithm performance using their benchmark technologies, such ashigh-resolution gamma-ray tomography and Positron-emission tomography (PET). The machine learning knowledge andexpertise from the National Research Council (NRC) would also add significant value to the project in terms of algorithmoptimisation.
产品配方的监控在快速消费品生产等许多制造业的绩效和管理中具有重要意义。几十年来,通过质量控制(QC)实验室的直接抽样方法一直是测量产品质量的主要方法。然而,这些基于抽样的方法往往耗时且不代表真实的产品条件。其他控制是基于时间的(例如清洁15分钟;混合3小时),当过程中的测量可以显著节省成本时。ITS开发了一种工业层析仪,利用电过程层析技术,能够提供准确的在线浓度/质量测量。工业仪表已应用于制造领域,具有良好的性能。相信同样的技术可以更广泛地应用于快速消费品行业,如在线产品识别,以减少浪费,提高连续生产线的生产率。该技术可以进一步扩展到现场清洁(CIP)的实时测量。ITS层析仪的原理主要基于多相电测量,因为上述应用都涉及多种成分,这些成分具有不同的电特性。为了使用ITS层析仪监测多相过程,需要一个外部仪器来跟踪主液体的电导率变化,因此系统输出可以独立于背景波动,这可能受到离子浓度或水介质温度的影响。理想情况下,电导率探头可以安装在采样罐中,探头测量可以潜在地反映传感器中液体的原位状态。然而,实际上,找到一个合适的位置,可以可靠地表明主要材料的导电性是具有挑战性的。此外,由于流动干扰和产品污染的风险,探头不能与工艺管道串联安装。为了解决这个问题,ITS开发了一种机器学习算法,可以根据现有的原始传感器测量数据提取液体电导率的变化,这种新算法使系统能够准确地监测在线液体电导率,旨在消除系统对电导率探头的依赖。此外,对于单相过程,机器学习算法还可以用于识别产品配方或批次过渡过程的完整性,从而实现相对于产品配方的真正的原位流体质量控制。这一创新已经在实验室规模上进行了测试,并证明在一系列工艺条件下(TRL4)是稳健的。下一阶段将研究机器学习算法在放大过程环境(TRL5)中应用时的鲁棒性。萨斯喀彻温省研究委员会(SRC)和伯明翰大学(UoB)的流动钻机设施为使用他们的基准技术(如高分辨率伽马射线断层扫描和正电子发射断层扫描(PET))表征算法性能提供了理想的平台。来自国家研究委员会(NRC)的机器学习知识和专业知识也将在算法优化方面为该项目增加重要价值。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
$ 20.13万 - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
$ 20.13万 - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
$ 20.13万 - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
$ 20.13万 - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
$ 20.13万 - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
$ 20.13万 - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
$ 20.13万 - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
$ 20.13万 - 项目类别:
Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
- 批准号:
2879865 - 财政年份:2027
- 资助金额:
$ 20.13万 - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
$ 20.13万 - 项目类别:
Studentship
相似国自然基金
CuAgSe基热电材料的结构特性与构效关系研究
- 批准号:22375214
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
海洋微藻生物固定燃煤烟气中CO2的性能与机理研究
- 批准号:50806049
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
Web服务质量(QoS)控制的策略、模型及其性能评价研究
- 批准号:60373013
- 批准年份:2003
- 资助金额:20.0 万元
- 项目类别:面上项目
相似海外基金
Development of an electrical impedance myography (EIM) vaginal device for the evaluation of pelvic skeletal muscles
开发用于评估盆腔骨骼肌的电阻抗肌动描记 (EIM) 阴道装置
- 批准号:
10822537 - 财政年份:2023
- 资助金额:
$ 20.13万 - 项目类别:
Intraoperative Pulsed Field Ablation and Lesion Assessment System
术中脉冲场消融和病变评估系统
- 批准号:
10762116 - 财政年份:2023
- 资助金额:
$ 20.13万 - 项目类别:
Cognitively engaging walking exercise and neuromodulation to enhance brain function in older adults
认知性步行锻炼和神经调节可增强老年人的大脑功能
- 批准号:
10635832 - 财政年份:2023
- 资助金额:
$ 20.13万 - 项目类别:
Experience-based and intentional suppression of distracting information
基于经验和有意抑制分散注意力的信息
- 批准号:
10717468 - 财政年份:2023
- 资助金额:
$ 20.13万 - 项目类别:
Restoring Dexterous Hand Function with Artificial Neural Network-Based Brain-Computer Interfaces
利用基于人工神经网络的脑机接口恢复灵巧手功能
- 批准号:
10680206 - 财政年份:2023
- 资助金额:
$ 20.13万 - 项目类别:
Characterizing and modulating motor cortical dynamics underlying rapid sequence learning in primates
表征和调节灵长类动物快速序列学习背后的运动皮层动力学
- 批准号:
10677450 - 财政年份:2023
- 资助金额:
$ 20.13万 - 项目类别:
Bacterial Adhesion Inhibition and Biofilm Disruption by Adaptive Piezoelectric Biomaterial
自适应压电生物材料抑制细菌粘附和破坏生物膜
- 批准号:
10668030 - 财政年份:2023
- 资助金额:
$ 20.13万 - 项目类别:
Wireless mechano-electrical stimulation of pudendal nerve using piezoelectric platform for stress urinary incontinence
利用压电平台无线机电刺激阴部神经治疗压力性尿失禁
- 批准号:
10629570 - 财政年份:2023
- 资助金额:
$ 20.13万 - 项目类别:
Development of Quantum Magnetic Tunneling Junction Sensor Arrays for Brain Magnetoencephalography (MEG) under Natural Settings
自然环境下脑磁图 (MEG) 量子磁隧道结传感器阵列的开发
- 批准号:
10723802 - 财政年份:2023
- 资助金额:
$ 20.13万 - 项目类别:
dMRI-guided pre-operative planning for supra-total resection of high-grade gliomas
dMRI引导的高级别胶质瘤超全切除术前规划
- 批准号:
10635099 - 财政年份:2023
- 资助金额:
$ 20.13万 - 项目类别: