ISS: Dynamic Manipulation of Multi-Phase Flow Using Light-Responsive Surfactants for Phase-Change Applications

ISS:使用光响应表面活性剂进行相变应用的多相流动态操控

基本信息

  • 批准号:
    2025655
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Boiling heat transfer plays a key role in a wide range of terrestrial applications, including power plants that produce the majority of electricity in the US, heating and cooling of buildings, desalination and distillation. The boiling heat transfer performance is directly related to the removal rate of bubbles generated during boiling. However, in most terrestrial applications, bubble departure is naturally driven by buoyancy; it is difficult to control the bubble departure size and frequency. A simple method that can actively control bubble motion with large tuning range is highly desirable, since it would significantly expand the range of achievable boiling heat transfer rate, with the potential to improve the efficiency of power plants and reduce energy consumption in building thermal management. This project aims to develop a new method to control bubbles and droplets, by exploiting liquids whose surface tension can be changed with light. The microgravity environment eliminates the interference of buoyancy, which allows us to purely observe and understand this light-driven fluid motion. This method can be generalized to manipulate multi-phase fluid for condensation processes and applications including precision control in 3D printing, lab-on-a-chip microfluidics for biomedical and optical applications. The overarching goal of this research is to achieve dynamic manipulation of multi-phase fluid motion using light and photo-responsive surfactants, and apply it to enhance boiling heat transfer. Photo-responsive surfactants can reversibly switch their molecular conformation when illuminated with light, resulting in a dynamically tunable and spatially reconfigurable surface tension that can drive multi-phase fluid motion (the photo-Marangoni effect). The project tasks include: (i) experimentally test the depinning criteria and migration velocity of droplets and bubbles controlled by light, (ii) develop the first modeling framework for the photo-Marangoni effect, and ultimately (iii) promote bubble departures during boiling to enhance thermal transport by optically “pinching off” bubbles with control. The use of microgravity is essential to enable large length scales exceeding the typical capillary lengths on earth, as well as long time scales for bubble/droplet departure, which greatly reduces the requirements of microscopic and high-speed visualization. Microgravity will also allow direct experimental observation of the proposed light-controlled motion without buoyancy and natural convection, which ensures accurate fundamental understanding and comparison to theory. This light-tuning method will serve as an effective yet simple new platform for dynamic fluid and heat transfer manipulation. This platform will significantly contribute to developing new research capabilities and inspiring new applications beyond heat transfer, such as novel approaches to droplet-based biochemical assays, dynamic patterning and manufacturing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
沸腾传热在广泛的地面应用中起着关键作用,包括在美国产生大部分电力的发电厂,建筑物的加热和冷却,海水淡化和蒸馏。沸腾传热性能与沸腾过程中气泡的去除率直接相关。然而,在大多数地面应用中,气泡的离开是由浮力自然驱动的;气泡偏离的大小和频率难以控制。一种能够主动控制气泡运动且调节范围大的简单方法是非常可取的,因为它将大大扩大可实现的沸腾换热率范围,具有提高电厂效率和降低建筑热管理能耗的潜力。该项目旨在开发一种控制气泡和液滴的新方法,通过利用表面张力可以随光改变的液体。微重力环境消除了浮力的干扰,使我们能够纯粹地观察和理解这种光驱动的流体运动。这种方法可以推广到控制多相流体的冷凝过程和应用,包括3D打印、生物医学和光学应用的芯片实验室微流体的精确控制。本研究的总体目标是利用光和光响应表面活性剂实现多相流体运动的动态控制,并将其应用于提高沸腾传热。光响应表面活性剂在光照下可以可逆地改变其分子构象,从而产生动态可调和空间可重构的表面张力,从而驱动多相流体运动(光-马兰戈尼效应)。该项目的任务包括:(i)实验测试水滴和气泡在光控制下的脱壳标准和迁移速度,(ii)开发光-马兰戈尼效应的第一个建模框架,以及最终(iii)通过控制光学“挤压”气泡来促进沸腾过程中的气泡偏离以增强热传输。微重力的使用对于实现超过地球上典型毛细长度的大长度尺度以及气泡/液滴离开的长时间尺度至关重要,这大大降低了微观和高速可视化的要求。微重力还将允许直接实验观察提出的光控运动,没有浮力和自然对流,这确保了准确的基本理解和与理论的比较。这种光调谐方法将作为一个有效而简单的动态流体和热传递操作的新平台。该平台将大大有助于开发新的研究能力和激发热传递以外的新应用,例如基于液滴的生化分析,动态图案和制造的新方法。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yangying Zhu其他文献

Micro and nanostructures for two-phase fluid and thermal transport
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yangying Zhu
  • 通讯作者:
    Yangying Zhu
COVID-19: Effects of weather conditions on the propagation of respiratory droplets
COVID-19:天气条件对呼吸道飞沫传播的影响
  • DOI:
    10.1101/2020.05.24.20111963
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lei Zhao;Yuhang Qi;P. Luzzatto‐Fegiz;Yi Cui;Yangying Zhu
  • 通讯作者:
    Yangying Zhu
Characterization of thin film evaporation in micropillar wicks using micro-Raman spectroscopy
使用显微拉曼光谱表征微柱吸芯中的薄膜蒸发
  • DOI:
    10.1063/1.5048837
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Lenan Zhang;Yangying Zhu;Zhengmao Lu;Lin Zhao;K. Bagnall;S. R. Rao;E. Wang
  • 通讯作者:
    E. Wang
Resolving thermal gradients and solidification velocities during laser melting of a refractory alloy
解决难熔合金激光熔化过程中的热梯度和凝固速度
  • DOI:
    10.1016/j.addma.2025.104750
  • 发表时间:
    2025-05-05
  • 期刊:
  • 影响因子:
    11.100
  • 作者:
    Hyunggon Park;Kaitlyn M. Mullin;Vijay Kumar;Olivia Wander;Tresa M. Pollock;Yangying Zhu
  • 通讯作者:
    Yangying Zhu
Nanoengineered materials for liquid–vapour phase-change heat transfer
用于液-汽相变传热的纳米工程材料
  • DOI:
    10.1038/natrevmats.2016.92
  • 发表时间:
    2016-12-06
  • 期刊:
  • 影响因子:
    86.200
  • 作者:
    H. Jeremy Cho;Daniel J. Preston;Yangying Zhu;Evelyn N. Wang
  • 通讯作者:
    Evelyn N. Wang

Yangying Zhu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yangying Zhu', 18)}}的其他基金

CAREER: Understanding thermal transport across phase-change interfaces via in situ micro-Raman thermography
职业:通过原位显微拉曼热成像了解相变界面上的热传输
  • 批准号:
    2047727
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant

相似国自然基金

Dynamic Credit Rating with Feedback Effects
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目

相似海外基金

Collaborative Research: Gel rupture under simple and dynamic loading: manipulation of failure mode via patterned heterogeneity in soft materials
合作研究:简单动态载荷下的凝胶破裂:通过软材料中的图案异质性操纵失效模式
  • 批准号:
    2311698
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: Gel rupture under simple and dynamic loading: manipulation of failure mode via patterned heterogeneity in soft materials
合作研究:简单动态载荷下的凝胶破裂:通过软材料中的图案异质性操纵失效模式
  • 批准号:
    2311697
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
What is it to pick up an upside-down cup? The dynamic interaction between actor, environment, and task in the emergence of second-order planning for object manipulation
拿起一个倒过来的杯子是什么感觉?
  • 批准号:
    RGPIN-2022-03017
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
What is it to pick up an upside-down cup? The dynamic interaction between actor, environment, and task in the emergence of second-order planning for object manipulation
拿起一个倒过来的杯子是什么感觉?
  • 批准号:
    DGECR-2022-00243
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Launch Supplement
Metamaterial Design Platform and Dynamic Building Blocks for Non-Equilibrium, Symmetry-Violating Manipulation of Mechanical Waves
用于非平衡、对称破坏机械波操纵的超材料设计平台和动态构建模块
  • 批准号:
    2128671
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
NRI: FND: Immersive whole-body teleoperation of wheeled humanoid robots for dynamic mobil manipulation
NRI:FND:用于动态移动操纵的轮式人形机器人的沉浸式全身远程操作
  • 批准号:
    2024775
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
NRI: INT: Agile and Dynamic Interactions for Mobile Manipulation
NRI:INT:移动操纵的敏捷和动态交互
  • 批准号:
    1925130
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Manipulation of dynamic tumor blood vessel permeability: nano-eruption
动态肿瘤血管通透性的调控:纳米喷发
  • 批准号:
    19K16766
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Object Carrying and Dynamic Manipulation Systems Applied with Locomotion Control Techniques of Underactuated Robots
应用于欠驱动机器人运动控制技术的物体搬运和动态操纵系统
  • 批准号:
    19K04255
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Dynamic manipulation of strongly confined terahertz surface waves on meta-surfaces, Goubau lines and wire pairs
超表面、古鲍线和线对上强约束太赫兹表面波的动态操纵
  • 批准号:
    409503410
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了