Large Solutions to Systems of Nonlinear Equations
非线性方程组的大解
基本信息
- 批准号:0422888
- 负责人:
- 金额:$ 2.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-09-01 至 2006-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NSF Award Abstract - DMS-0206631Mathematical Sciences: Large Solutions to Systems of Nonlinear EquationsAbstract0206631 JenssenThe object of this research is threefold. First, we seek a better understanding of solutions to systems of hyperbolic (inviscid) conservation laws that are large in either amplitude or variation. New examples of explosive behavior will be considered, as well as conditions preventing singular behavior. Next, we will consider the multi-dimensional Navier-Stokes equations for a compressible fluid and establish global existence of large solutions with spherical or cylindrical symmetry. Finally, we will consider flow describing combustion. This is modeled by the Navier-Stokes equations augmented by equations describing the chemical processes. In this case we are particularly interested in the stability of wave patterns.The work deals with mathematical analysis of solutions to nonlinear partial differential equations. The research will investigate systems of conservation laws, compressible fluid flow, and equations describing reactive flow. Much of the existing theory for such nonlinear equations applies only to small solutions. However, large solutions are of great interest in applications such as gas flow, combustion, and detonations, and study of these solutions requires new techniques that will be developed in this project.
数学科学:非线性方程组的大解本研究的目的有三个方面。 首先,我们寻求一个更好的理解双曲(无粘)守恒律系统的解决方案,无论是大幅度或变化。 爆炸行为的新例子将被考虑,以及防止奇异行为的条件。 接下来,我们将考虑可压缩流体的多维Navier-Stokes方程,并建立具有球对称或柱对称的大解的整体存在性。 最后,我们将考虑描述燃烧的流。 这是由描述化学过程的方程增强的Navier-Stokes方程建模的。 在这种情况下,我们特别感兴趣的稳定性的波动patterns.The工作涉及数学分析的解决方案,非线性偏微分方程。 研究将调查系统的守恒定律,可压缩流体流动,和方程描述反应流。 许多现有的理论,这种非线性方程只适用于小的解决方案。 然而,大型解决方案在气体流动,燃烧和爆炸等应用中具有很大的兴趣,这些解决方案的研究需要在本项目中开发的新技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Helge Jenssen其他文献
Helge Jenssen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Helge Jenssen', 18)}}的其他基金
Construction and Physicality of Compressible Euler Flows
可压缩欧拉流的构造和物理性
- 批准号:
1813283 - 财政年份:2018
- 资助金额:
$ 2.61万 - 项目类别:
Continuing Grant
Collaborative Research: Fundamental challenges in nonlinear hyperbolic PDE
合作研究:非线性双曲偏微分方程的基本挑战
- 批准号:
1311353 - 财政年份:2013
- 资助金额:
$ 2.61万 - 项目类别:
Continuing Grant
Entropies, geometric structures, and interactions for systems of conservation laws
守恒定律系统的熵、几何结构和相互作用
- 批准号:
1009002 - 财政年份:2010
- 资助金额:
$ 2.61万 - 项目类别:
Standard Grant
CAREER: Large and Multi-Dimensional Solutions of Conservation Laws
职业:守恒定律的大型和多维解决方案
- 批准号:
0539549 - 财政年份:2005
- 资助金额:
$ 2.61万 - 项目类别:
Standard Grant
CAREER: Large and Multi-Dimensional Solutions of Conservation Laws
职业:守恒定律的大型和多维解决方案
- 批准号:
0449689 - 财政年份:2005
- 资助金额:
$ 2.61万 - 项目类别:
Standard Grant
Large Solutions to Systems of Nonlinear Equations
非线性方程组的大解
- 批准号:
0206631 - 财政年份:2002
- 资助金额:
$ 2.61万 - 项目类别:
Standard Grant
相似海外基金
Large solutions for systems of hyperbolic conservation laws and wave equations in one and multiple space dimensions
一维和多维空间双曲守恒定律和波动方程组的大解
- 批准号:
2008504 - 财政年份:2020
- 资助金额:
$ 2.61万 - 项目类别:
Standard Grant
Challenges to unexplored fields of research on the Cauchy problem for systems of quasi-linear wave equations--large-time behavior and regularity of solutions--
拟线性波动方程组柯西问题的未探索领域研究面临的挑战——解的大时间行为和规律性——
- 批准号:
18K03365 - 财政年份:2018
- 资助金额:
$ 2.61万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a computer-assisted proof method to verify the existence of solutions for systems to large-scale nonlinear elliptic partial differential equations
开发计算机辅助证明方法来验证大规模非线性椭圆偏微分方程系统解的存在性
- 批准号:
16K17651 - 财政年份:2016
- 资助金额:
$ 2.61万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
A study on consistent preconditioners for iterative solutions of large-scale linear systems
大规模线性系统迭代求解的一致预处理器研究
- 批准号:
25390145 - 财政年份:2013
- 资助金额:
$ 2.61万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Power Electronics and High Voltage Intensive Solutions for Very Large Scale Megawatt Photovoltaic Systems
职业:超大规模兆瓦光伏系统的电力电子和高压密集型解决方案
- 批准号:
1054479 - 财政年份:2011
- 资助金额:
$ 2.61万 - 项目类别:
Standard Grant
Well Posedness of Systems of Conservation Laws Near Solutions Containing Large Waves
包含大波浪的解附近守恒定律系统的适定性
- 批准号:
0600371 - 财政年份:2005
- 资助金额:
$ 2.61万 - 项目类别:
Standard Grant
Well Posedness of Systems of Conservation Laws Near Solutions Containing Large Waves
包含大波浪的解附近守恒定律系统的适定性
- 批准号:
0306201 - 财政年份:2003
- 资助金额:
$ 2.61万 - 项目类别:
Standard Grant
Large Solutions to Systems of Nonlinear Equations
非线性方程组的大解
- 批准号:
0206631 - 财政年份:2002
- 资助金额:
$ 2.61万 - 项目类别:
Standard Grant
International Research Fellow Awards: Large Time Behavior of Solutions to Nonlinear Hyperbolic-Parabolic Systems of Conservation Laws with Non-Strict Hyperbolicity
国际研究员奖:非严格双曲性守恒定律非线性双曲-抛物线系统解的大时间行为
- 批准号:
9704618 - 财政年份:1997
- 资助金额:
$ 2.61万 - 项目类别:
Fellowship Award
RUI: Finding All Numerical Solutions for Large-Scale Nonlinear Systems of Equations Parallelly and Reliably in a Given Domain
RUI:在给定域中并行可靠地找到大规模非线性方程组的所有数值解
- 批准号:
9503757 - 财政年份:1995
- 资助金额:
$ 2.61万 - 项目类别:
Standard Grant