Well Posedness of Systems of Conservation Laws Near Solutions Containing Large Waves
包含大波浪的解附近守恒定律系统的适定性
基本信息
- 批准号:0600371
- 负责人:
- 金额:$ 1.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-09-01 至 2007-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposal will establish boundedness and integrability results for wave patterns arising from strictly hyperbolic systems of conservation laws. The methods apply to patterns of non-interacting shock and rarefaction waves generated as solutions of the one-dimensional Riemann and Cauchy problems without any restrictions on their amplitude. As to the project's broader impacts, the PI is hoping to link the analytical results obtained to recent experimental data where the bounded variation instabilities of certain heavy gases have been discovered. These findings will have impact in the fields of astronomy and astrophysics.
该建议将建立有界性和可积性的结果所产生的严格双曲系统的守恒律的波图案。该方法适用于图案的非相互作用的冲击和稀疏波产生的一维黎曼和柯西问题的解决方案,没有任何限制,其振幅。至于该项目的更广泛的影响,PI希望将获得的分析结果与最近的实验数据联系起来,在这些数据中发现了某些重气体的有限变化不稳定性。这些发现将在天文学和天体物理学领域产生影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marta Lewicka其他文献
The Monge-Ampère system in dimension two: A regularity improvement
二维蒙日 - 安培系统:一种正则性改进
- DOI:
10.1016/j.jfa.2025.111064 - 发表时间:
2025-10-15 - 期刊:
- 影响因子:1.600
- 作者:
Marta Lewicka - 通讯作者:
Marta Lewicka
A remark on the genericity of multiplicity results for forced oscillations on manifolds
- DOI:
10.1007/s102310200030 - 发表时间:
2002-03-01 - 期刊:
- 影响因子:0.900
- 作者:
Marta Lewicka;Marco Spadini - 通讯作者:
Marco Spadini
Visualization of the convex integration solutions to the Monge-Ampère equation
Monge-Ampère 方程凸积分解的可视化
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:1.5
- 作者:
Luca Codenotti;Marta Lewicka - 通讯作者:
Marta Lewicka
On the genericity of the multiplicity results for forced oscillations on compact manifolds
- DOI:
10.1007/s000300050008 - 发表时间:
1999-12-01 - 期刊:
- 影响因子:1.200
- 作者:
Marta Lewicka;Marco Spadini - 通讯作者:
Marco Spadini
Marta Lewicka的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marta Lewicka', 18)}}的其他基金
Dimension Reduction and Singular Limits of Prestrained Structures
预应变结构的降维和奇异极限
- 批准号:
2006439 - 财政年份:2020
- 资助金额:
$ 1.91万 - 项目类别:
Standard Grant
Singular limits with geometric effects
具有几何效应的奇异极限
- 批准号:
1613153 - 财政年份:2016
- 资助金额:
$ 1.91万 - 项目类别:
Standard Grant
Theoretical Models of Shape Formation: Analysis, Geometry and Energy Scaling Laws
形状形成的理论模型:分析、几何和能量缩放定律
- 批准号:
1406730 - 财政年份:2014
- 资助金额:
$ 1.91万 - 项目类别:
Standard Grant
Workshop on "Advances in Nonlinear Science"
“非线性科学进展”研讨会
- 批准号:
1266188 - 财政年份:2013
- 资助金额:
$ 1.91万 - 项目类别:
Standard Grant
CAREER: Thin shells - problems in nonlinear elasticity and fluid dynamics
职业:薄壳 - 非线性弹性和流体动力学问题
- 批准号:
1338869 - 财政年份:2011
- 资助金额:
$ 1.91万 - 项目类别:
Continuing Grant
Dynamics and Stable Structures in Some Nonlinear PDEs
一些非线性偏微分方程中的动力学和稳定结构
- 批准号:
1142369 - 财政年份:2011
- 资助金额:
$ 1.91万 - 项目类别:
Standard Grant
CAREER: Thin shells - problems in nonlinear elasticity and fluid dynamics
职业:薄壳 - 非线性弹性和流体动力学问题
- 批准号:
0846996 - 财政年份:2009
- 资助金额:
$ 1.91万 - 项目类别:
Continuing Grant
Dynamics and Stable Structures in Some Nonlinear PDEs
一些非线性偏微分方程中的动力学和稳定结构
- 批准号:
0707275 - 财政年份:2007
- 资助金额:
$ 1.91万 - 项目类别:
Standard Grant
Well Posedness of Systems of Conservation Laws Near Solutions Containing Large Waves
包含大波浪的解附近守恒定律系统的适定性
- 批准号:
0306201 - 财政年份:2003
- 资助金额:
$ 1.91万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Well-posedness and long-time behavior of reaction-diffusion and kinetic equations
职业:反应扩散和动力学方程的适定性和长期行为
- 批准号:
2337666 - 财政年份:2024
- 资助金额:
$ 1.91万 - 项目类别:
Continuing Grant
Well-posedness and Long-time Behavior of Dispersive Integrable Systems
色散可积系统的适定性和长期行为
- 批准号:
2348018 - 财政年份:2024
- 资助金额:
$ 1.91万 - 项目类别:
Continuing Grant
Well-Posedness and Singularity Formation in Applied Free Boundary Problems
应用自由边界问题中的适定性和奇异性形成
- 批准号:
2307638 - 财政年份:2023
- 资助金额:
$ 1.91万 - 项目类别:
Standard Grant
Studies on behavior of solutions and the well-posedness for the nonlinear dispersive system in plasma physics
等离子体物理中非线性色散系统解的行为及适定性研究
- 批准号:
23KJ2028 - 财政年份:2023
- 资助金额:
$ 1.91万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Effective use of multi-precision arithmetic on floating number system of digital computers aiming at numerical computations of differential equations with singulari or ill-posedness
针对奇异或不适定微分方程的数值计算,有效利用数字计算机浮点数系统的多精度运算
- 批准号:
21H00999 - 财政年份:2021
- 资助金额:
$ 1.91万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Well-Posedness for Integrable Dispersive Partial Differential Equations
可积色散偏微分方程的适定性
- 批准号:
2054194 - 财政年份:2021
- 资助金额:
$ 1.91万 - 项目类别:
Standard Grant
Well-posedness of a model for the dynamics of fluids with the moving contact line
具有移动接触线的流体动力学模型的适定性
- 批准号:
21K13826 - 财政年份:2021
- 资助金额:
$ 1.91万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Research on the well-posedness, regularity, and justification of numerical methods for fluid problems and related boundary-value problems
流体问题及相关边值问题数值方法的适定性、规律性和合理性研究
- 批准号:
20K14357 - 财政年份:2020
- 资助金额:
$ 1.91万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Well-posedness for the equation on electrohydrodynamics
电流体动力学方程的适定性
- 批准号:
20K14350 - 财政年份:2020
- 资助金额:
$ 1.91万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Well-posedness for higher order dispersive equations and their symmetric structure
高阶色散方程及其对称结构的适定性
- 批准号:
20J12750 - 财政年份:2020
- 资助金额:
$ 1.91万 - 项目类别:
Grant-in-Aid for JSPS Fellows