Optimal computation of flow field variables from natural visual signals
根据自然视觉信号优化计算流场变量
基本信息
- 批准号:0423039
- 负责人:
- 金额:$ 41.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-09-15 至 2008-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Optimal computation of flow field variables from natural visual signals.R.R. de Ruyter van Steveninck, W. BialekMany animals use visual information to navigate their environment, and in this context it is important for them to estimate how they move through space. Visual input, gathered by the eye, contains information that is related to self motion, but the connection between what we see and how we are moving is indirect and sometimes ambiguous. Moreover, light is carried by photons, and because these arrive at random the visual input forms a noisy representation of the surroundings. To make optimal estimates of self motion from visual input, the brain must therefore use an algorithm that takes into account the statistics of the visual input signals and the probabilistic relation between visual input and self motion.This project will study motion estimation in the natural world as a statistical estimation problem, and compare the predictions of statistically optimal processing to measurements in a biological system. There are fundamental as well as practical reasons for studying the problem, but there is an additional motivation. That is to investigate if, and to what extent, neural computations in biological systems can be understood as being optimized for their specific tasks in the natural environment. This is a hard issue to solve in general, since the answer depends on poorly known statistical properties of natural sensory signals. The present case provides an example where one can measure and quantify both the signals that need to be estimated (rotations) and the data on which this estimate is based (raw visual input). Moreover, a level of statistical sampling can be achieved that allows a direct application of statistical inference to data that are representative for natural sensory signals. The investigators will construct a precise high speed camera, with spatial sampling characteristics representative for the fly visual system, and with associated gyrosensors to measure camera rotation along three axes (yaw, pitch and roll). With this camera they will make precise simultaneous measurements of rotational camera motion and visual input in a natural environment. This simultaneous sampling makes it possible to effectively measure the probability distributions that describe the relation between motion and visual input. From this distribution, the characteristics of the optimal statistical motion estimator can be derived. These predictions for the computational structure of the optimal estimator will be compared to the behavior of motion sensitive neurons recorded from the visual brain of the blowfly. That comparison will allow quantitative assessement of the extent to which biological motion processing in the blowfly approaches optimal performance. Preliminary experiments have shown that both the blowfly and the optimal estimator show specific biases in their output, depending on the statistics of the input signals. There are strong indications that other animals, including humans, share similar biases, suggesting that these biases are an inevitable and universal consequence of the optimal processing of natural sensory signals.
根据自然视觉信号对流场变量的优化计算许多动物使用视觉信息来导航它们的环境,在这种情况下,估计它们如何在空间中移动是很重要的。视觉输入由眼睛收集,包含与自我运动有关的信息,但我们所看到的和我们如何移动之间的联系是间接的,有时是模棱两可的。此外,光是由光子携带的,因为光子是随机到达的,所以视觉输入形成了对周围环境的嘈杂表示。为了从视觉输入中对自身运动做出最优估计,大脑必须使用一种算法,该算法考虑视觉输入信号的统计以及视觉输入和自我运动之间的概率关系。本项目将把自然世界中的运动估计作为统计估计问题来研究,并将统计最优处理的预测与生物系统中的测量进行比较。研究这个问题既有基本的原因,也有实际的原因,但还有一个额外的动机。也就是说,研究生物系统中的神经计算是否以及在多大程度上可以被理解为针对自然环境中的特定任务进行了优化。这通常是一个很难解决的问题,因为答案取决于鲜为人知的自然感觉信号的统计特性。本案例提供了一个例子,其中可以测量和量化需要估计的信号(旋转)和该估计所基于的数据(原始视觉输入)。此外,可以达到统计抽样的水平,从而允许将统计推断直接应用于代表自然感觉信号的数据。研究人员将建造一台精密的高速相机,具有代表飞行视觉系统的空间采样特征,并配备相关的陀螺传感器来测量相机沿三个轴(偏航、俯仰和侧滚)的旋转。有了这款相机,他们将在自然环境中同时精确测量相机的旋转运动和视觉输入。这种同步采样使得能够有效地测量描述运动和视觉输入之间的关系的概率分布。从该分布可以推导出最优统计运动估计器的特性。这些对最优估计器计算结构的预测将与苍蝇视觉大脑记录的运动敏感神经元的行为进行比较。这种比较将允许定量评估苍蝇的生物运动处理在多大程度上接近最佳性能。初步实验表明,苍蝇和最优估计器在其输出中都显示出特定的偏差,这取决于输入信号的统计。有强烈的迹象表明,包括人类在内的其他动物也有类似的偏见,这表明这些偏见是自然感觉信号最佳处理的必然和普遍结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rob de Ruyter van Steveninck其他文献
Rob de Ruyter van Steveninck的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rob de Ruyter van Steveninck', 18)}}的其他基金
German-USA Collaborative Symposium - Growing Connections in Computational Neuroscience
德国-美国合作研讨会 - 计算神经科学中不断增长的联系
- 批准号:
0834442 - 财政年份:2008
- 资助金额:
$ 41.97万 - 项目类别:
Standard Grant
相似国自然基金
基于分位数g-computation的多污染物联合空气质量健康指数构建及预测效果评价
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于g-computation控制纵向数据未测混杂因素的因果推断模型构建及应用研究
- 批准号:81903416
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
面向MANET的密钥管理关键技术研究
- 批准号:61173188
- 批准年份:2011
- 资助金额:52.0 万元
- 项目类别:面上项目
基于计算和存储感知的运动估计算法与结构研究
- 批准号:60803013
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
基于安全多方计算的抗强制电子选举协议研究
- 批准号:60773114
- 批准年份:2007
- 资助金额:28.0 万元
- 项目类别:面上项目
量子计算电路的设计和综合
- 批准号:60676020
- 批准年份:2006
- 资助金额:31.0 万元
- 项目类别:面上项目
相似海外基金
SBIR Phase I: A Flexion-Based Computational Fluid Dynamics Tool for the Fast Computation of Turbulent Flow over Complex Geometries
SBIR 第一阶段:基于弯曲的计算流体动力学工具,用于快速计算复杂几何形状的湍流
- 批准号:
2133757 - 财政年份:2022
- 资助金额:
$ 41.97万 - 项目类别:
Standard Grant
How do neurons coordinate alternative energy sources to meet the demands of computation?
神经元如何协调替代能源以满足计算需求?
- 批准号:
10606195 - 财政年份:2022
- 资助金额:
$ 41.97万 - 项目类别:
Formulation and numerical computation of the low frequency mean flow of fluids
流体低频平均流量的公式和数值计算
- 批准号:
463179503 - 财政年份:2021
- 资助金额:
$ 41.97万 - 项目类别:
WBP Fellowship
Multi-Objective Optimization of an Axial Flow Hydraulic Turbine with a Collection Device Using Evolutionary Computation Method and Elucidation of Water Collection Acceleration Action
使用进化计算方法对带有集水装置的轴流式水轮机进行多目标优化以及集水加速作用的阐明
- 批准号:
20K04258 - 财政年份:2020
- 资助金额:
$ 41.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a method to form hollow silicon spheres, with application to photovoltaic cells: experiment and computation.
开发一种形成空心硅球的方法,并将其应用于光伏电池:实验和计算。
- 批准号:
20K04293 - 财政年份:2020
- 资助金额:
$ 41.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Analysis and Computation of Dynamics of Elastic Structures in Stokes Flow
合作研究:斯托克斯流中弹性结构动力学分析与计算
- 批准号:
2042144 - 财政年份:2020
- 资助金额:
$ 41.97万 - 项目类别:
Standard Grant
Collaborative Research: Analysis and Computation of Dynamics of Elastic Structures in Stokes Flow
合作研究:斯托克斯流中弹性结构动力学分析与计算
- 批准号:
1907583 - 财政年份:2019
- 资助金额:
$ 41.97万 - 项目类别:
Standard Grant
RUI: Collaborative Research: Analysis and Computation of Dynamics of Elastic Structures in Stokes Flow
RUI:协作研究:斯托克斯流中弹性结构动力学分析与计算
- 批准号:
1907796 - 财政年份:2019
- 资助金额:
$ 41.97万 - 项目类别:
Standard Grant
Collaborative Research: Modeling and Computation of Three-Dimensional Multicomponent Vesicles in Complex Flow Domains
合作研究:复杂流域中三维多组分囊泡的建模与计算
- 批准号:
1719960 - 财政年份:2017
- 资助金额:
$ 41.97万 - 项目类别:
Standard Grant
Collaborative Research: Modeling and Computation of Three-Dimensional Multicomponent Vesicles in Complex Flow Domains
合作研究:复杂流域中三维多组分囊泡的建模与计算
- 批准号:
1719834 - 财政年份:2017
- 资助金额:
$ 41.97万 - 项目类别:
Standard Grant